THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Андрей Дмитриевич Линде, Стэнфордский университет (США), профессор. 10 июня 2007 года, Москва, ФИАН

Во-первых, я должен сказать, что я немножечко робею. Я в этом зале выступал много раз. Сначала я здесь учился, и когда всё это началось, я был студентом Московского университета, приходил сюда на семинары, в ФИАН. И каждый раз я сидел на этих семинарах, мучительно, мне было жутко интересно, а также невероятно сложно. Всё то, что говорилось, я понимал, ну, примерно на десять процентов. Я думал, что, наверное, я, ну, идиот такой, ничего больше не понимаю, физика из меня не получится… Но уж больно хотелось, продолжал ходить. Эти десять процентов понимания у меня сохранились до сих пор: в основном на семинарах, на которые я хожу, я понимаю примерно десять процентов. А потом я сделал впервые свой доклад здесь. Я поглядел на лица людей, и у меня было впечатление, что они тоже понимают на десять процентов. И тогда у меня исчез комплекс неполноценности, отчасти по крайней мере. Немного, наверное, всё равно остался… Я зачем это говорю? Тематика довольно сложная. И если десять процентов будет понятно, то, значит, вы на правильном пути.

То, о чём я сейчас буду говорить, связано с теорией инфляционной Вселенной. Инфляционная Вселенная, по-русски это называлось «раздувающаяся Вселенная», но стандартное название «инфляционная». В последнее время возник такой термин - «Multi-verse». Это термин, заменяющий слово «Universe». Значит, вместо одной Вселенной - много вселенных сразу в одной. Ну вот по-русски, пожалуй, наиболее адекватный перевод - это «многоликая Вселенная». И про это я сейчас буду говорить.

Но сначала общее введение о космологии вообще. Откуда взялась инфляционная космология (зачем она понадобилась)? Что было до нее (теория Большого взрыва). Сначала такие биографические данные. Возраст Вселенной, согласно последним наблюдаемым данным… Вот когда я говорю про возраст, каждый раз я говорю и где-то в душе ставлю маленькую запятую, что я должен к этому вернуться и потом сказать, что на самом деле Вселенная может быть бесконечно старая. Ну вот то, что люди называют возрастом Вселенной, это примерно 13,7 миллиарда лет с точностью до… пожалуй, лучше, чем 10%. Сейчас люди знают это достаточно хорошо. Размер наблюдаемой части Вселенной… Что значит «наблюдаемой»? Ну вот, свет путешествовал к нам 13,7 миллиарда лет, значит надо умножить это на скорость света и получится расстояние, на котором мы сейчас видим вещи. Говорю я это, а в душе сразу опять ставится запятая: на самом деле это не так. Потому что мы видим в несколько раз дальше, чем это, потому что те объекты, которые послали к нам свет 13,7 миллиарда лет назад, они сейчас от нас находятся дальше. И мы от них видим свет-то, а они дальше, поэтому в действительности мы видим больше, чем скорость света умножить на время существования Вселенной.

Дальше. Средняя плотность вещества - примерно 10 –29 г/см 3 . Очень мало. Но мы живем в том месте, где оно сконденсировалось… Вес наблюдаемой части Вселенной - больше 10 50 тонн. Вес в момент рождения… а вот это вот самое интересное. Когда Вселенная родилась, если отсчитывать прямо от момента Большого взрыва, совсем вот во время t = 0 , то ее вес должен был быть бесконечным. Если отсчитывать от какого-то другого момента… он называется планковский. Планковский момент - это момент 10 в степени минус… Ну вот, иногда все-таки буду писать на доске… Значит, t планковское - это примерно 10 в минус сорок третьей секунд (t p ~ 10 –43 с). Это момент, начиная с которого впервые мы можем Вселенную рассматривать в терминах нормального пространства-времени, потому что если мы возьмем объекты на временах меньше, чем это, или на расстояниях меньше, чем планковское расстояние (это 10 –33 см), - если мы возьмем меньшее расстояние, то на меньших расстояниях пространство-время так сильно флуктуирует, что померить их будет нельзя: линейки гнутся, часы вращаются, как-то нехорошо… Поэтому нормальное рассмотрение начинается с этого момента. И в этот момент Вселенная имела вес необычайно большой. Я вам скажу, какой - немножечко погодя. А то, что сделала инфляционная Вселенная: мы научились объяснять, как можно всю Вселенную получить из меньше чем одного миллиграмма вещества. Всё, что мы сейчас видим…

И давайте дальше, предварительные данные. Простейшие модели Вселенной, то, что вошло в учебники, - это три возможных модели Фридмана. Первая - это замкнутая Вселенная, [вторая] - открытая Вселенная, и [третья] - плоская Вселенная. Эти картинки - тоже примерные только картинки. Смысл состоит в следующем.

Вот простейший вариант - плоская Вселенная. Геометрия плоской Вселенной такая же, как геометрия плоского стола, то есть параллельные линии остаются параллельными и нигде не пересекаются. В чём отличие, чем отличается от плоского стола? Тем, что если у меня есть две параллельные линии… например, пошло два луча света, параллельные друг другу… Вселенная расширяется, поэтому, хотя они параллельные, два луча света, они удаляются друг от друга за счет того, что вся Вселенная расширяется. Поэтому сказать так - что геометрия плоского стола, - это не до конца правильно. Вселенная является кривой в четырехмерном смысле. В трехмерном смысле она является плоской.

Замкнутая Вселенная похожа геометрическими свойствами на свойства поверхности сферы. То есть если у меня есть две параллельные линии на экваторе, то они пересекаются на северном и южном полюсе. Параллельные линии могут пересекаться. А мы как бы живем на поверхности сферы, как такая блоха, которая ползет по глобусу. Но тоже аналогия поверхностная - в двух смыслах. Наша Вселенная, она как бы трехмерная сфера в четырехмерном пространстве. Приходится картинки рисовать, а в действительности только аналогии… И, кроме того, она расширяется. Если мы захотим пройти от экватора до северного полюса, то нам времени не хватит - такая Вселенная может сколлапсировать, или мы не дойдем, потому что она слишком быстро расширяется.

Открытая Вселенная похожа по своим свойствам на свойства гиперболоида, то есть если у горловины гиперболоида я пущу две параллельные прямые, то они начнут расходиться и никогда не встретятся.

Вот три основных модели. Их предложил Фридман довольно давно, в 20-е годы прошлого столетия, и Эйнштейн их очень не любил. Не любил, потому что это всё как бы противоречило той идеологии, на которой были воспитаны люди того времени. Идеология состояла в том, что Вселенная - это ведь система координат, ну и координаты-то, они не расширяются, это просто сетка. Люди всегда считали в Европе - сначала считали, - что Вселенная конечна и статична. Конечна, потому что Бог бесконечен, а Вселенная меньше Бога, поэтому она должна быть конечна, а статична… ну, потому что, что же ей делать-то - система координат… Потом они отказались от первого предположения, сказав, что Бог не потеряет много, если он один из своих атрибутов отдаст Вселенной и сделает ее бесконечной, но всё равно считалось, что она статична.

Расширение Вселенной - это было странное такое свойство, против которого долго боролись, до тех пор, пока не увидели, что она на самом деле расширяется. Значит, то, что произошло за последние несколько лет, экспериментально - не в теоретической физике, а в экспериментальной космологии. Выяснилось две вещи. Мы начнем со второго. В 1998 году люди увидели, что Вселенная сейчас расширяется с ускорением. Что означает с ускорением? Ну, вот она расширяется с какой-то скоростью. В действительности, это немножко неправильно…

Значит, вот a - это масштаб Вселенной, a с точкой (å ) - это скорость расширения Вселенной, a с точкой разделить на a (å /a ) - это… Вот a , например, расстояние от одной галактики до другой, назовем его буквой a . А это (å /a ) - скорость, с которой галактики убегают друг от друга. Вот эта вещь (å /a = H) есть хаббловская постоянная, она на самом деле зависит от времени. Если эта вещь убывает со временем, это не означает, что Вселенная перестает расширяться. Расширение означает, что a с точкой больше нуля (å > 0). А вот то, что люди обнаружили сейчас, - что сейчас этот режим асимптотически приближается к константе (å /a = H → const), то есть не только a с точкой положительно, но вот это их отношение, оно устремляется к константе. И если это дифференциальное уравнение разрешить, окажется, что масштабный фактор Вселенной ведет себя асимптотически приблизительно так: a ~ e H t - Вселенная будет экспоненциально расширяться, и этого не очень-то ожидали раньше. То есть это есть ускоренное расширение Вселенной, а раньше, по стандартной теории, выходило, что Вселенная должна расширяться с замедлением.

Вот это открытие последних девяти лет. Сначала люди думали, что, ну, где-нибудь экспериментальная ошибка, еще что-то, потом стали называть их разными словами - космологическая постоянная, энергия вакуума, темная энергия… Значит, вот это то, что произошло недавно. Теория о которой я сейчас буду говорить, - это инфляционная космология. Она предполагает (и сейчас всё больше кажется, что, наверное, это было правильное предположение, мы еще всё равно в точности не знаем - есть конкурирующие теории, хотя они мне там и не нравятся, но, значит, это точки зрения) - но кажется, что это вот правильная вещь, - что в ранней Вселенной, по-видимому, Вселенная тоже расширялась ускоренно. Причем с гораздо большим ускорением, чем то, с каким она расширяется сейчас, - на много десятков порядков большим ускорением. Вот эти два открытия… по-видимому, их надо попытаться интерпретировать как-то.

Значит, картинки, которые при этом часто рисуют… Вот (пока что не смотрите на эту красную картинку) стандартная, из учебника. Если Вселенная замкнутая - то есть геометрия похожа на геометрию сферы, поверхности сферы, - то она возникает из сингулярности и исчезает в сингулярность, у нее конечное время существования. Если она плоская, то она возникает из сингулярности и расширяется до бесконечности. Если она открытая, то она тоже продолжает двигаться с постоянной скоростью.

То, что выяснилось, то, что я сейчас сказал насчет этой темной энергии, космологической постоянной, ускорения Вселенной, - выяснилось, что она ведет себя так. И выяснилось, что она ведет себя так, какая бы она ни была - открытая, закрытая, плоская… Вообще в таких случаях вот такая вот вещь. Сейчас, если мы открываем учебники по астрономии, в основном они всё еще публикуют вот эти вот три картинки, и это то, на чём мы были воспитаны в течение последних лет. Поэтому существование вот этой последней - это было замечательное открытие, и оно связано с тем, что люди поверили, что в вакууме существует ненулевая плотность энергии, в пустоте. Она очень маленькая: она такого же порядка, как плотность энергии вещества во Вселенной, - 10 –29 г/см 3 . И вот когда я иногда представляю этих людей, я говорю: «Посмотрите, вот это люди, которые померили энергию… ничего». Вот так, вот эта вот красная черта.

Общая картина распределения энергии… Когда я говорю «энергия», или говорю «материя», «вещество», я подразумеваю одно и то же, потому что, как мы знаем, E равняется mc квадрат (E = mc 2 ), то есть эти две вещи пропорциональны друг другу… Есть темная энергия…


Полный бюджет энергии и материи во Вселенной представлен таким вот пирогом: 74% примерно составляет темная энергия. Что это такое, никто не знает. Либо это энергия вакуума, либо это энергия медленно меняющегося однородно распределенного специального скалярного поля - об этом дальше. Ну, вот это отдельная часть, она не комкуется. Что я под этим подразумеваю? Она не сбивается в галактики. Темная материя (примерно 22% всего бюджета) - что-то такое, что комкуется, но чего мы не видим. Что-то, что может сбиваться в Галактики, но чего мы не видим, не светится. И примерно 4–5% - это «нормальная» материя. Вот бюджет всей нашей материи.

И есть там мировые загадки. Почему они одного и того же порядка, эти величины, и почему так много все-таки такой энергии сидит в пустоте? Как же это вообще так оказалось, что мы, такие гордые, думали, что всё такого типа, как мы, а нам-то и дали всего четыре процента… Так вот…

Теперь - инфляционная Вселенная. Пока что идет просто справка, чтобы было понятно, о чём я говорю, а уже потом начнется дело. Инфляция - это вот что. Вот то, что было на предыдущих картинках, что Вселенная началась и начала расширяться, и, помните, дуга была выгнута вот в такую сторону… Вот если я вернусь назад, покажу вам вот это всё… вот видите, все дуги - они были выгнуты вот так. Инфляция - это кусок траектории, который существовал как бы до Большого взрыва в некотором смысле, до того, как дуга начала прогибаться так. Это время, когда Вселенная расширялась экспоненциально и Вселенная расширялась с ускорением. Она изначально могла иметь очень маленький размер, а потом была стадия очень быстрого расширения, потом она становилась горячей, и потом происходило всё то, что в учебниках было написано: что Вселенная была горячая, взорвалась, как горячий шар, - вот это всё было после стадии инфляции, а во время инфляции частиц могло не быть вообще. Вот такая справка.

Значит, зачем всё это понадобилось? А затем, что люди смотрели 25 лет назад - немножко больше уже - на теорию Большого взрыва и задавали разные вопросы. Я перечислю вопросы.

Что было, когда ничего не было? Ясно, что вопрос бессмысленный, чего же его задавать… В учебнике Ландау и Лифшица написано, что решения уравнений Эйнштейна нельзя продолжить в области отрицательного времени, поэтому бессмысленно спрашивать, что было до этого. Бессмысленно, но все люди всё равно спрашивали.

Почему Вселенная однородна и изотропна? Вопрос: почему, действительно? Что значит однородна? Ну вот, если мы рядом с нами посмотрим, наша Галактика - она не однородна. Рядом с нами Солнечная система - большие неоднородности. Но если мы посмотрим в масштабах всей наблюдаемой нами сейчас части Вселенной, вот эти 13 миллиардов световых лет, то в среднем справа и слева от нас Вселенная имеет ту же самую плотность, с точностью примерно до одной десятитысячной и даже лучше, чем это. Значит, кто-то ее отполировал, почему она такая однородная? И в начале прошлого века на это отвечали следующим образом. Есть такая вещь, которая называется «космологический принцип»: что Вселенная должна быть однородна.

Я любил шутить, что люди, у которых нет хороших идей, у них иногда есть принципы. Потом я перестал это делать, потому что оказалось, что этот принцип был введен, в частности, Альбертом Эйнштейном. Просто в то время люди не знали, и до сих пор во многих книжках по астрономии люди обсуждают космологический принцип - что Вселенная должна быть однородна, потому что… ну, вот она однородна!

С другой стороны, мы знаем, что принципы - они уж должны быть тогда полностью правильные. Там, не знаю, человек, который берет маленькие взятки, его нельзя назвать человеком принципов. Наша Вселенная была немножко неоднородной - в ней есть галактики, они необходимы для нас, значит откуда-то мы должны понять, откуда, галактики берутся.

Почему все части Вселенной стали расширяться одновременно? Та часть - Вселенная, и та часть - Вселенная, они друг с другом не говорили, когда Вселенная только что начала расширяться. Несмотря на то, что размер Вселенной был маленький, для того чтобы одна часть Вселенной узнала о том, что другая начала расширяться, надо, чтобы человек, который живет здесь, - ну, воображаемый человек - узнал бы о том, что эта часть начала расширяться. А для этого он должен бы был получить сигнал от того человека. А для этого потребовалось бы время, так что люди никак не могли договориться, особенно в бесконечной Вселенной, что, ура, надо начать расширяться, уже позволили… Значит, это почему все части Вселенной начали расширяться одновременно…

Почему Вселенная плоская? То, что сейчас экспериментально известно, - что Вселенная почти плоская, то есть параллельные линии, они не пересекаются в наблюдаемой части Вселенной. Значит, почему Вселенная такая плоская? Нас в школе учат, что параллельные линии не пересекаются, а в университете говорится, что Вселенная может быть замкнутая, и они могут пересекаться. Так почему Эвклид был прав? Не знаю…

Почему во Вселенной такое огромное количество элементарных частиц? В наблюдаемой нами части Вселенной больше чем 10 87 элементарных частиц. Стандартный ответ на это состоял в том, что, ну, Вселенная - она же большая, вот поэтому… А почему она такая большая? И я иногда аккумулирую это в таком виде: почему так много людей пришло на лекцию? - а потому, что так много людей в Москве… - а почему так много людей в Москве? - а Москва только часть России, а в России много людей, часть пришла на лекцию… - а почему так много людей в России, вот в Китае еще больше? А вообще говоря, мы только на одной планете живем, а у нас много планет в Солнечной системе, а сейчас еще больше планет отыскивают еще во Вселенной, а вы знаете, что в нашей Галактике 10 11 звезд, и поэтому где-то планеты, где-то есть люди, часть из них пришла на лекцию… Почему в нашей Галактике так много звезд? А вы знаете, сколько галактик в нашей части Вселенной? Примерно 10 11 –10 12 галактик, и в каждой из них 10 11 звезд, вокруг них вращаются планеты, и часть людей пришла на лекцию. А почему у нас так много галактик? Ну, потому что Вселенная же большая… Значит… и вот здесь мы и кончаем.

А если взять, например, Вселенную - типичную замкнутую Вселенную, у которой был бы единственный типичный размер, который имеется в общей теории относительности вместе с квантовой механикой, - 10 –33 см, начальный размер. Значит, сжать вещество до самой предельной плотности, которая только возможна (это так называемая планковская плотность, ρ планковское), - это примерно 10 94 г/см 3 … Почему предельная? Она не в том смысле предельная, что дальше нельзя, а в том смысле, что если сжать материю до такой плотности, то Вселенная начинает так флуктуировать, что ее нормальным способом описать невозможно. Значит, вот если взять и сжать материю до самой большой плотности, засунуть в нее естественного размера замкнутую Вселенную и посчитать количество элементарных частиц там, то окажется, что в ней есть одна элементарная частица. Может быть, деcять элементарных частиц. А нам надо 10 87 . Поэтому это реальная проблема - откуда, почему так много элементарных частиц?

Дело этим не кончается. Откуда взялась вся энергия во Вселенной? Вот раньше я даже это так для себя не сформулировал, до тех пор, пока меня не пригласили в Швецию на какой-то нобелевский симпозиум, посвященный энергии… то есть туда собрались люди, которые занимаются нефтедобычей, еще чего-то. И мне дали там открывать эту конференцию, и первый доклад… Я никак не мог понять, чего они от меня хотят? Я нефтедобычей не занимаюсь, солнечной энергией и энергией ветра не занимаюсь, что я про энергию вообще скажу? Ну, и начал я тогда доклад с того, что сказал: вы знаете, откуда энергия-то взялась во Вселенной? Знаете, сколько у нас энергии? Давайте посчитаем.

Энергия вещества во Вселенной не сохраняется. Первый парадокс. Вот мы знаем, что энергия сохраняется, - а вот это не правильно. Потому что, если мы возьмем, например, загоним газ в ящик и дадим ящику расширяться… Вот ящик - это наша Вселенная, дадим ящику расширяться. Газ - он давление оказывает на стенки ящика. И когда ящик расширяется, этот газ совершает работу над стенками ящика, и поэтому когда ящик расширяется, газ энергию свою теряет. Потому что он работу совершает, всё правильно, баланс энергии есть. Но только факт-то состоит в том, что во время расширения Вселенной полная энергия газа уменьшается. Потому что есть стандартное уравнение: изменение энергии равняется минус давление умножить на изменение объема (dE = –PdV ). Объем-то Вселенной растет, давление-то положительно, поэтому энергия уменьшается.

Вот во всех моделях Вселенной, нормальных, тех, которые были ассоциированы с теорией Большого взрыва, полная энергия Вселенной уменьшалась. Если сейчас 10 50 т, то сколько же было в начале? Потому что энергия-то только тратилась. Значит, тогда в начале должно было быть больше. Кто-то должен был сделать эту Вселенную с гораздо большей энергией, чем сейчас. С другой стороны, что-то же должно сохраняться. А куда тратится эта энергия во время расширения Вселенной? Она тратится на то, что размер Вселенной меняется, что Вселенная расширяется с некоторой скоростью. Есть некоторая энергия, которая прячется в геометрии Вселенной. Есть энергия, которая связана с гравитацией. И вот полная сумма энергии вещества и гравитационной энергии, она сохраняется. Но только если посчитать полную сумму. Есть разные способы счета - и опять там запятая некая ставится, - но при некотором способе счета полная сумма энергии вещества и гравитации, она просто равна нулю. То есть энергия материи компенсируется энергией гравитационного взаимодействия, поэтому есть ноль. И поэтому, да, она началась с нуля, она нулем и кончится, всё сохраняется, но только этот закон сохранения, он не очень полезен для нас. Он не объясняет нам, откуда же такая огромная энергия взялась. Значит, сколько?

Вот согласно теории Большого взрыва, полная масса вещества в начале, когда Вселенная родилась, должна была превосходить 10 80 т. Это уже много. Это совсем много… А если бы я это всё отчислял даже прямо от сингулярности, то просто во Вселенной должно было быть бесконечное количество вещества. И тогда возникает вопрос: откуда же кто-то нам дал это бесконечное количество вещества, если до момента возникновения Вселенной, ну, ничего не было? Сначала ничего не было, а потом вдруг стало, и так много, что даже как-то немножко странно. То есть кто бы это мог сделать?.. А физики так вопрос формулировать не хотели, ну и сейчас не хотят.

Поэтому, может быть, хорошо, что нашлась теория, которая позволяет, по крайней мере в принципе, объяснить, как можно было сделать всё это, исходя из кусочка Вселенной с изначальным количеством материи меньше одного миллиграмма. Ну вот, когда я про это говорю, я думаю, что бы нормальный человек подумал, если бы такую вещь сказать давно, или если бы не писать уравнений при этом, и так далее…

Я помню, когда меня здесь проводили на старшего научного сотрудника, вызвали меня и начали меня спрашивать: «А чем вы занимаетесь?» А я им начал говорить, что вот, занимаюсь я, в частности, тем, что в разных частях Вселенной может оказаться так, что законы физики могут быть разные: в части есть, там, электромагнитное взаимодействие, в части - нет… Они мне сказали: «Ну, это уж слишком!» Но старшего научного все-таки дали. Вот это и есть та самая теория многоликой Вселенной, о которой я вам буду говорить.

Вот мы переходим к делу, к теории инфляционной космологии. Сначала первая простейшая модель. Простейшая модель выглядит следующим образом. Вот у вас есть некое скалярное поле, у которого энергия пропорциональна квадрату скалярного поля. Первые простейшие слова - и уже здесь возникает вопрос: что такое скалярное поле? Часть людей знает, часть людей не знает. Часть людей знает, что в Швейцарии сейчас строится огромный ускоритель, для того чтобы найти хиггсовскую частицу. Хиггсовская частица - это частица, которая является как бы квантом возбуждения специального типа скалярного поля. То есть люди используют эти поля уже давно, больше тридцати лет. Но смысл интуитивный легче всего понять с помощью аналогии. Вот здесь вот есть 220 вольт в сети. Если бы было просто 220 вольт и не было нуля, всю Вселенную заполнило бы 220 вольт, то никакого тока бы не было, ничего бы никуда не текло, потому что это было бы просто другое вакуумное состояние. В Америке 110 вольт. То же самое - если было бы просто 110 вольт, ничего бы не текло… Если вы возьметесь одной рукой за одну сторону, другой рукой за другую, то вас бы тут же убило, потому что разница потенциалов - это то, что… Я должен перестать…

Хорошо. Значит, так вот, постоянное скалярное поле - это аналог такого же поля. Это не точная аналогия, но примерная аналогия. Что такое векторное поле? Векторное поле - например, электромагнитное. У него имеется величина и направление. Что такое скалярное поле? У него имеется величина, а направления нет. Вот и вся разница, то есть оно гораздо проще, чем электромагнитное поле. У него нет направления, оно является лоренцовским скаляром. Лоренцовский скаляр - это означает следующее. Если вы побежите относительно него, вы не почувствуете, что вы бежите: ничего не изменилось. Если вы повернетесь, ничего не изменится тоже, вы не почувствуете, что вы поворачиваетесь. Выглядит как вакуум, если оно не движется, если оно постоянно. Но только это специальный вакуум, потому что у него может быть потенциальная энергия. Это первое свойство его. И во-вторых, если у вас в разных частях Вселенной разный вакуум, то там также разный вес элементарных частиц, разные свойства, поэтому от того, есть или нет это скалярное поле, а) зависят свойства элементарных частиц и б) зависит плотность энергии вакуума во Вселенной, так что это, в принципе, важная вещь. И вот простейшая теория, у которой энергия этого скалярного поля пропорциональна его квадрату.


Давайте посмотрим на уравнения. Я сейчас никакие уравнения решать не буду, а показывать их буду, так что не надо бояться… Первое - это немного упрощенное уравнение Эйнштейна, которое говорит: вот это скорость расширения Вселенной поделить на размер, это есть Хаббловская постоянная в квадрате, и она пропорциональна плотности энергии вещества во Вселенной. А я сейчас захочу пренебречь всем - там, газом, чем угодно… оставить только скалярное поле. И здесь надо было бы написать гравитационную постоянную, там еще восемь пи на три…

Сейчас забудем про гравитационную постоянную. Люди, которые занимаются этой наукой, они говорят: ну, возьмем гравитационную постоянную равную единице, скорость света, равную единице, постоянную Планка, равную единице, а потом, когда всё решим, мы это обратно вставим в решение, чтобы проще было…

Значит, вот это чуть-чуть упрощенное уравнение Эйнштейна, я оттуда еще выбросил пару членов, которые сами оттуда выбрасываются, после того как Вселенную начнет быстро сдувать. Это уравнение движения для скалярного поля. Не глядите сейчас на этот член. Это есть ускорение скалярного поля, а это показывает ту силу, с которой поле хочет устремиться в свой минимум энергии. И, для того чтобы было понятно, сравните это с уравнением для гармонического осциллятора. Опять, не смотрите на этот член. Это есть ускорение гармонического осциллятора, пропорциональное возвращающей силе. То есть сила, которая тащит поле осциллятора в точку x = 0, а это его ускорение. И мы знаем, чем дело кончается. Осциллятор так вот осциллирует. А если мы добавим такой член, x с точкой. Это скорость движения осциллятора. То есть это, если его перенести вот в эту сторону, будет понятно, что это как бы сила, которая не пускает осциллятор двигаться быстро. Это примерно как если вы засунете маятник в воду, то вода будет препятствовать осцилляции, и он будет осциллировать всё медленнее и медленнее. Как бы сила трения или вязкости.

Вот оказывается, что во Вселенной тоже имеется аналогичный член, который описывает уравнение для скалярного поля. Уравнение-то выглядит точно так же. И этот член похож на этот. Вот оказывается, что во Вселенной эффект трения возникает, если Вселенная быстро расширяется. Вот такой трюк. Теперь давайте вернемся к предыдущей картинке.

Вот когда скалярное поле здесь, то энергии у скалярного поля мало, Вселенная расширяется медленно, трения никакого нету. Если скалярное поле находится здесь, то энергия очень большая. Если энергия очень большая, посмотрим, что получается, на следующей картинке.

Энергия очень большая, Хаббловская постоянная большая, коэффициент трения большой. Если коэффициент трения большой, скалярное поле катится вниз очень медленно. Если скалярное поле катится вниз очень медленно, то в течение большого времени оно остается почти постоянным. Если оно остается почти постоянным, я решаю вот это уравнение: a с точкой на a (å /a ) равняется почти постоянной. А я вам уже сказал, какое будет решение. Если a с точкой на a (å /a ) является почти постоянной, то это экспоненциальное решение, самое простейшее дифференциальное уравнение. И в таком случае Вселенная начинает расширяться экспоненциально.


Логика такая: если большое значение скалярного поля φ, большая скорость расширения Вселенной, большой коэффициент трения, поле φ катится вниз очень медленно. Решая дифференциальное уравнение с константой, получаем экспоненциальное расширение, это есть инфляция. Всё очень просто.

До этого надо было, в общем, помучиться, чтобы додуматься, чтобы всё свести к простому. В действительности началось всё с гораздо более сложного. Впервые идеи такого типа стал высказывать Алеша Старобинский в 1979 году здесь, в России. Его вариант этой теории основывался на квантовой гравитации с определенными поправками - конформные аномалии, теория была очень сложной, непонятно было, как, с чего начать, но теория, тем не менее, внутри Советского Союза была тогда очень популярной, она называлась «моделью Старобинского». Но немножко сложноватой, не было понятно, какая ее цель. Он хотел решить проблему сингулярности, это не удавалось…

После этого возникло то, что сейчас называется старая инфляционная теория, ее предложил в 1981 году Алан Гус (Alan Guth) из MIT - сейчас он в MIT, а раньше он было в SLAC , рядом со Стэнфордом. Он предложил, что Вселенная с самого начала сидит зажатая по своей энергии в состоянии ложного вакуума, никуда не движется, энергия там постоянная, в это время она расширяется экспоненциально, а потом этот ложный вакуум с треском разваливается, образуются пузырьки, они соударяются… Зачем это было нужно? А его желание состояло в том, чтобы решить тот лист проблем, который я вам написал раньше: почему Вселенная однородная, почему она изотропная, почему такая большая, - его цель была такая. И в этом было достоинство его работы. Не потому, что он предложил модель - его теория не работала, а потому, что он сказал, что вот замечательно было бы сделать что-то такое, и тогда мы решим сразу все эти проблемы. А его модель не работала потому, что после столкновения пузырьков Вселенная становилась такой неоднородной и изотропной, что, как бы, не надо было и стараться…

После этого все мы находились в состоянии душевного кризиса, потому что идея была такая приятная, такая симпатичная, и у меня была язва желудка, может быть от огорчения, что нельзя, никак не получается. А потом я придумал, как сделать то, что я назвал новой инфляционной теорией, а потом я придумал вот эту простую штуку с хаотической инфляцией, которая была проще всего. И тогда стало ясно, что мы говорим не о трюке каком-то, а всё может быть так просто, как теория гармонического осциллятора.

Но зачем это всё надо, я не сказал. А вот зачем. Во время инфляции, во время вот этой стадии, пока я катился вниз, Вселенная могла расшириться вот в такое количество раз. Это в простейших моделях. Что означает вот эта цифра? Ну вот я сейчас скажу, что это означает. Пример из арифметики. Самый маленький масштаб - 10 –33 см. Умножу его на десять, а дальше здесь рисуется вот такое вот количество нулей - не важно, какое количество нулей. Теперь возникает вопрос: чему равняется произведение? И ответ состоит в том, что вот, оно равняется вот этому же - значит, что 10 –33 можно уже не писать, это маленькая вещь. Значит, Вселенная оказывается вот такого огромного размера. А сколько мы сейчас видим? Вот эти 13 миллиардов лет, умноженные на скорость света, - это примерно 10 28 см. А вот это даже не важно, чего - сантиметров или миллиметров, не важно даже чего. Важно то, что вот это, ну, несопоставимо меньше этого.

То есть наша наблюдаемая часть Вселенной - мы вот где-то вот здесь. (Можно сейчас уже погасить, да? ) Вселенная начала расширяться, раздувалась, раздувалась, раздувалась, и мы живем как бы на поверхности этого огромного глобуса. И поэтому параллельные линии кажутся параллельными, поэтому никто и не видел этого северного и южного полюса. Поэтому наша часть Вселенной, где-то здесь, она вот началась где-то вот отсюда, из почти что точечки, и поэтому-то здесь все начальные свойства, ну, они-то рядышком, они были примерно одинаковыми. Поэтому и здесь они одинаковые.

А почему Вселенная такая однородная? Ну а представьте, что вы взяли Гималаи и растащили их вот в такое количество раз. Значит, у вас никто туда с рюкзаком не пойдет, потому что от долины до горы надо будет вот столько идти. Будет плоское место. Поэтому наша Вселенная такая плоская, такая однородная, во всех направлениях одинаковая.

Почему она изотропная? Что называется изотропной? Ну, она похожа как бы на сферу, во всех направлениях одинаковая, но она могла бы быть как огурец. Но если я огурец раздую вот в такое количество раз - а мы живем на его шкурке, - то во всех направлениях он будет одинаковым, поэтому Вселенная во всех направлениях станет одинаковой. То есть таким образом мы решаем большинство тех проблем, которые у нас возникали. Почему Вселенная такая большая? А вот почему! А сколько там элементарных частиц? А вот столько! Поэтому нам и хватает…

То есть мы еще не знаем, откуда всё это взялось, мы не можем так просто решить проблему сингулярности начальной - мы про это еще немножечко дальше скажем, - но вот это то, зачем была нужна эта теория.

С другой стороны, могло бы оказаться, что мы переработали немножко. Потому что если Гималаи полностью выплощить, то вся Вселенная будет настолько плоская и однородная, что действительно будет плохо жить там, мы тогда галактики ниоткуда не возьмем.

Но оказалось, что можно галактики продуцировать за счет квантовых флуктуаций. И это то, что здесь же, в ФИАНе, говорили Чибисов и Муханов . Они изучали модель Старобинского и увидели, что там, если посмотреть на квантовые флуктуации пространства, а потом посмотреть, что происходит во время расширения Вселенной, то они вполне могут породить галактики. И мы на них смотрели и думали: что вы, ребята, тут говорите? Вы говорите о квантовых флуктуациях, а мы говорим о галактиках! Они же реальные… А потом вот что выяснилось. Это уже когда мы перевели всё это на язык скалярного поля и так далее… Молодцы, в общем, люди! Надо же было додуматься до этого!

Вселенная работает как лазер, только вместо лазерного поля она продуцирует галактики. Вот что происходит. Возьмем скалярное поле, сначала высокочастотное, квантовые флуктуации. Квантовые флуктуации существуют всегда. Здесь, в этой аудитории, на маленьких расстояниях есть квантовые флуктуации. Хорошо, что вы мне дали два часа, я бы не закончил… За два часа, наверное, закончу…

Так вот, квантовые флуктуации существуют сейчас, прямо здесь, но они всё время осциллируют, их, если посмотреть в мелкоскоп и быстро так снимать, то тогда мы увидим, что там что-то возникает, что-то исчезает. Так просто не увидишь, они для нас не важны. Но во время быстрого расширения Вселенной, предположим, что была такая квантовая флуктуация. Она растягивалась, с расширением Вселенной. Когда она растянулась достаточно - помните это уравнение для скалярного поля, где стоит этот член 3Hφ с точкой? Уравнение, член с трением. Когда у вас поле было коротковолновое, оно знать ничего не знало о трении, потому что оно билось с такой энергией, что его трением остановить было нельзя. А потом, когда оно растянулось, оно энергию свою потеряло и вдруг почувствовало, что Вселенная расширяется, что трение есть, и вот так и застыло. Застыло и продолжало расширяться, растягивая Вселенную.

После этого, на фоне этой флуктуации, которая нарисована здесь, прежние флуктуации, которые раньше были очень коротковолновыми, энергичными и так далее, они растянулись, увидели, что Вселенная расширяется, почувствовали трение и застыли - на фоне тех флуктуаций, которые раньше застыли.

После этого Вселенная продолжала расширяться, и новые флуктуации замерзали, а Вселенная расширялась-то экспоненциально. И в результате что произошло? Что эти все флуктуации раздулись до большого размера.

Я сейчас поясню, что это такое: это результат вычислений, которые как бы симулируют возникновение флуктуаций и их дальнейшую эволюцию. Я объясню, что это будет, что это такое. Смысл состоит вот в чём. Что мы взяли эти квантовые флуктуации. Они замерзли. Вселенная стала неоднородной на экспоненциально большом масштабе. Эти неоднородности стоя т, стоя т, стоя т… Потом инфляция кончилась. Потом - эта часть Вселенной еще не видит эту часть Вселенной. А потом прошло время, и они друг друга увидели. И когда увидели, эта часть Вселенной сказала: «А, у меня энергии меньше, а у тебя энергии больше; давай, все камни от меня полетят в эту сторону, потому что здесь гравитация сильнее». И эти флуктуации размораживаются. То есть сначала они были заморожены - за счет быстрого расширения Вселенной. А потом, когда две части Вселенной друг друга увидели, то эти флуктуации размерзли, и это буквально… по барону Мюнхгаузену.

Я не знаю, в детстве сейчас вас учат, там, барона Мюнхгаузена читают? Нам читали. Как он путешествовал по России. Хотя он был немецкий лжец, но путешествовал по России, в Сибири. Они охотились. И был такой жуткий мороз, что когда он хотел позвать друзей, чтобы они вместе собрались, то он сказал «ту-туту-туту!», а ничего не получилось, потому что звук замерз в рожке. Ну, потом, было холодно, он в снегу, как опытный человек, отрыл пещеру, зарылся там… Наутро вдруг он слышит: «Ту-туту-туту!». Что произошло? Размерзся звук-то. Потому что утром солнце появилось, всё, снег подтаял, и звук размерзся…

Вот здесь это же самое: сначала квантовые флуктуации замерзли, растащились на большое расстояние, а потом, когда дело уже пришло к тому, чтобы галактики образовывались, они размерзли, и неоднородности собрались вместе и сделались галактикой.

Сначала мы начали с квантовых флуктуаций. Потом мы быстро сделали их огромными. И когда мы сделали их огромными, мы фактически сделали их классическими. Они уже в это время не осциллировали, не исчезали, они замерзли, были большими. Вот этот трюк - как из чего-то квантового сделать что-то классическое.

Значит, этот фильм показывает вот что. Если мы начнем с чего-то почти однородного, как сейчас, и потом начнем добавлять эти вот синусоиды… Каждый новый кадр показывает экспоненциально большую Вселенную. Но компьютер не мог расширяться, поэтому мы сжимали картинки. На самом деле надо понимать, что каждая картинка соответствует экспоненциально большей и большей Вселенной. И длины волн всех этих значений, они все примерно те же самые в момент, когда они создаются. А потом они растягиваются, но вот здесь не видно, что это здоровая синусоида. Кажется, что это пик, там, башня острая… Это просто потому, что компьютер их сжал.

Не видно также и другое: что в тех местах, где скалярное поле подскочило по случайности очень высоко, в этом месте энергия скалярного поля оказывается такой большой, что в этом месте Вселенная начинает расширяться еще гораздо быстрее, чем она расширялась здесь. И поэтому в действительности, если бы правильно рисовать картинку - ну просто компьютер не умеет это делать, и это не компьютер виноват, это просто физика такая: нельзя кривое пространство представить себе уложенным в наше пространство, просто кривовато, как кривая поверхность, не всегда это удается, поэтому здесь ничего не поделаешь, - надо просто понять, что вот эти вот пики, значит, размер отсюда досюда - он гораздо больше размера отсюда досюда. Здесь на самом деле здоровый пузырь.

Это то, что… - тоже достоинство русского обучения - то, что мы выяснили, когда были на практике военного дела в университете: что расстояние по прямой бывает гораздо длиннее, чем расстояние по кривой, если прямая проходит рядом с офицером… Здесь, если вы пойдете по прямой рядом с этим пиком, то вы никогда не дойдете, потому что расстояние будет всё больше и больше. Кривое пространство можно представить себе двумя способами. Первое - можно говорить про расширение Вселенной, а второе - можно говорить про сжатие человека. Вот человек - это мера всех вещей. Если вы идете отсюда и доходите рядом с пиком, то можно сказать, что ваши шаги становятся всё меньше, и меньше, и меньше, и меньше, и поэтому вам трудно, трудно идти. Это другое понимание того, что это такое за пузырь здесь - это просто место, где вы сами уменьшаетесь по сравнению со Вселенной. Это почти эквивалентные вещи.


Откуда мы всё это знаем? Откуда мы знаем, что это всё правда? Ну, во-первых, честно говоря, мы с самого начала ведь знали, что это - правда. Потому что, ну, такая красивая была теория, так всё запросто объясняла, что после этого как бы даже экспериментальные доказательства были не очень нужны, потому что Вселенная же, ну… большая? - Большая. Параллельные прямые не пересекаются? - Не пересекаются… И так далее. Другого объяснения не было.

Поэтому, как бы, вот есть экспериментальные данные. Но люди, всё равно, они хотят не просто так, а хотят, чтобы и еще что-нибудь предсказать бы, чего мы не знали, и чтобы это подтвердилось. И одно из предсказаний - эти вот квантовые флуктуации… Хорошо было бы их увидеть на небе, а мы их не видели. И один за другим стали запускаться разные системы, спутники, первый замечательный спутник - это был «Кобе» (COBE), запущенный в начале 90-х, и люди как раз в прошлом году получили нобелевские премии за это. Они увидели следующее. Они увидели, что микроволновое излучение, которое приходит к нам с разных сторон Вселенной, оно немножечко анизотропное.

Сейчас я объясню, о чём идет речь. В середине 60-х люди увидели, что на Землю идет излучение с температурой примерно 2,7 K. Чего-то такое, радиоволны, очень малоэнергичные, но со всех сторон. Потом они поняли, что это такое. Вселенная, когда она взорвалась, она была горячей. Потом, когда она расширилась, эти фотоны свою энергию потеряли, и когда они к нам дошли, они дошли вот такими дохленькими, с маленькой-маленькой энергией. И со всех сторон была та же самая энергия - 2,7 K. Температура - мера энергии. Потом начали смотреть более пристально и увидели, что вот в этом направлении температура 2,7 плюс еще примерно 10 –3 , а вот в этом направлении 2,7 минус еще 10 –3 . И почему же это такое? А вот почему: потому что Земля движется по отношению ко всей Вселенной. И есть вот это самое красное смещение. В ту сторону, куда мы движемся, там небо становится более голубым, фотоны приходят чуть-чуть более энергичные. А откуда движемся, они идут немножечко более красные. Это был простой эффект. И мы сразу поняли, с какой скоростью мы движемся по отношению к реликтовому излучению, всё было просто.

А потом люди захотели узнать, а нет ли еще какой-нибудь структуры? И вот запустили спутники, один из них «Кобе», а вот здесь, на картинке нарисован WMAP , спутник такой. И картинка, которая показывает как бы эволюцию во времени.

Сначала был Большой взрыв, потом было вот это ускорение Вселенной - инфляция, потом возникли квантовые флуктуации, которые замерзли, потом эти квантовые флуктуации, которые замерзли, привели к возникновению структуры небольшой во Вселенной. В это время Вселенная была очень горячей. Она была такой горячей, что сигналы до нас просто не доходили, так же как Солнце для нас здесь непрозрачно: оно очень горячее, поэтому мы вглубь Солнца можем видеть только на несколько сотен километров. Вот…


А потом вдруг Вселенная стала прозрачной для обычного излучения, потому что электроны объединились с протонами в атомы, и дальше, когда Вселенная стала более или менее нейтральной, свет стал проходить до нас. И вот мы видим то излучение, которое прошло от этого момента. И вот эти спутники, они посмотрели и померили температуру от разных точек во Вселенной с точностью до 10 –5 K. Вот представьте себе, что в лаборатории было трудно получить, там, температуру один градус Кельвина. Люди померили температуру Вселенной, 2,7 K плюс еще, там, много знаков после этого, и потом они померили неточности в этой температуре с точностью до 10 –5 . Ну, научная фантастика! Я никогда не верил вообще, что это возможно, но потом стал доверять друзьям-экспериментаторам, потому что мы-то знаем, что мы, теоретики, а вот экспериментаторы, оказывается…

Значит, вот, они померили такие маленькие пятнышки на небе, эти маленькие пятнышки - они здесь раскрашены. Мы знаем, что там, где энергия больше - это синее смещение, там где энергия меньше - это красное смещение, но здесь всё наоборот. Люди, которые эту карту раскрашивали, они понимали, что психология людей работает не так. Всё равно это не видимый свет, это радиоизлучение, поэтому не красный, не белый, никакой. Поэтому они его раскрасили искусственно. И вот то, что красное, это чтобы понять, что там горячо. А там, где синее, - это чтобы понять, что холодно. Поэтому они раскрасили прямо наоборот. Но не важно. Важно то, что вот эти пятнышки на небе, они с точностью до 10 –5 .

Если поглядеть повнимательнее на кусочек этого неба, то вот какая картинка здесь получается. Вот такие вот пятнышки. Что это такое? А вот что это. Возникли эти квантовые флуктуации скалярного поля, растащились на всё небо, замерзли там, изменили там немножечко геометрию Вселенной и плотность вещества, изменили за счет этого температуру реликтового излучения, которое к нам приходит, и поэтому эта температура, вот эти неоднородности, являются фотографией тех квантовых флуктуаций, которые возникли на последних стадиях инфляции - возникли и замерзли. То есть мы сейчас видим всё небо, и это всё небо является как фотографическая пластинка, на которой изображены квантовые флуктуации, возникшие на конечной стадии инфляции, примерно в 10 –30 с. Мы видим фотографию того, что произошло с 10 –30 -й секунды после Большого взрыва. Ну вот, чудеса, что тут можно сказать!

Мало того, что мы видим эту фотографию - изучили ее спектральные свойства. То есть эти пятнышки на больших угловых размерах имеют одну интенсивность, на маленьких угловых размерах они имеют другую интенсивность. Посчитали спектр этих флуктуаций и выяснили, что спектр - он вот такой: черные пятнышки - это то, что экспериментально видит этот самый спутник WMAP. С тех пор появились и еще другие результаты, которые вот в эту область простираются, я их сейчас здесь и приводить не стал. Но вот красная линия - это теоретические предсказания простейшей модели инфляционной Вселенной, а черные точки - это то, что экспериментально видно.

Здесь есть какие-то аномалии. При больших углах самые большие расстояния маленькие. Здесь l - то, что здесь, вот, на этой оси, - это количество гармоник. То есть чем больше l , тем больше гармоники, тем меньше угол. На маленьких углах прекрасное совпадение с экспериментальными данными. На больших углах что-то не до конца понятное происходит. Но может быть, это просто потому неточности, потому что нам дан-то один только кусок Вселенной: мы статистику изучаем, а статистика у нас - как вы подбросили монетку один раз, какая вам статистика? Вам надо подбросить ее сто раз, чтобы увидеть, что примерно 50 на 50 произошло. Поэтому на больших углах статистика не очень точная. Всё равно немножечко точки выпадают - есть некая проблема, что здесь происходит. Какие-то есть анизотропии во Вселенной, которые мы не можем объяснить в больших масштабах пока что. Но тем не менее, факт-то состоит в том, что все остальные точки, оказывается, прекрасно ложатся. И поэтому совпадение теории с экспериментом очень впечатляющее.


Я решил для себя, что я должен придумать способ объяснить изменение картины мира на простом языке. А картина мира… Сейчас, я пока что до этой самой теории многоликой Вселенной еще не дошел. Это пока что простая картинка… Так вот. Изменение картины мира, оно выглядит так. Что сидим мы на Земле, смотрим вокруг. И вот окружены этой хрустальной сферой. Дальше ничего мы видеть не можем, а есть там звёзды, планеты… И мы знаем, что мы используем нашу космологию как машину времени.

Если мы возьмем и посмотрим, там, на Солнце, мы видим Солнце, каким оно было несколько минут назад. Посмотрим на дальние звёзды. Мы увидим звёзды такими, какими они были много лет назад, сотни лет назад, тысячи лет назад.

Если мы еще дальше пойдем, то мы увидим вот это место, где Вселенная только что стала горячей, и в это время пошли к нам фотоны, это вот то, что эти спутники видят, вот мы увидели этот космический огонь. А дальше Вселенная непрозрачна. Дальше, ближе к этому Большому взрыву, который произошел вот эти 13 миллиардов лет назад, мы подойти не можем. Но, конечно, если бы использовать, например, нейтрино, которые в это время излучены, - мы знаем, что мы можем получать нейтрино, которые идут из центра Солнца, - можно было бы получить нейтрино, которые были испущены ближе к этому Большому взрыву. Сейчас мы видим только то, что было примерно 400 000 лет после Большого взрыва. Ну, все-таки… по сравнению с 13 миллиардами четыреста тысяч - довольно хорошо… Но если бы нейтрино, мы могли бы подойти гораздо ближе. Если бы гравитационные волны, мы могли бы подойти совсем близко к Большому взрыву, прямо вот буквально до вот таких вот времен от Большого взрыва.


А что говорит инфляция? А инфляция говорит вот что. Что на самом деле вот этот весь огонь космический, он возник после инфляции, и здесь есть экспоненциально много места, когда вся Вселенная была заполнена только скалярным полем, когда частиц никаких не было, а если бы они даже и были, то плотность их экспоненциально падала бы всё время, потому что Вселенная экспоненциально расширялась.

Поэтому что бы там ни было до инфляции, это совершенно не важно. Вселенная здесь была практически пустой, а энергия сидела в этом скалярном поле. А уж после того, как оно - помните эту картину: скалярное поле шло вниз, вниз, вниз, потом постепенно, когда оно доходило донизу, Хаббловская постоянная становилась маленькой - оно начинало осциллировать, в это время за счет своих осцилляций оно порождало нормальную материю. В это время Вселенная становилась горячей. В это время возник этот огонь. А мы раньше думали, что этот огонь от начала мира. Мы просто были как волки, которые боятся через огонь перепрыгнуть, мы знали, что вот это вот начало мира.

Выясняется сейчас, что для того, чтобы объяснить, почему этот огонь был так однородно распределен, нам надо было, чтобы была стадия, которая всё уравнивала. И это - инфляционная стадия.


И дальше можно по небу идти далеко-далеко за это место, потому что Вселенная вот такая вот большая, вот столько там было. И если мы пойдем дальше, мы увидим эти места, где возникают квантовые флуктуации, которые порождают галактики. И мы увидим те места, где эти флуктуации такие большие, что они порождали новые части Вселенной, которые расширялись быстро и которые порождаются и возникают и сейчас . Вселенная за счет этих квантовых флуктуаций порождает сама себя, не только галактики, но большие части самой себя. И она становится бесконечной и самовоспроизводящейся Вселенной.

Но помимо всего этого возникает еще один эффект. Вот я вам рассказывал про Вселенную, в которой было скалярное поле только одного типа. Скалярное поле с таким простым потенциалом… Мы знаем, что если мы хотим описать теорию элементарных частиц полностью, то нам нужно много скалярных полей. Например, в теории электрослабых взаимодействий имеется хиггсовское поле. И хиггсовское поле делает все частицы нашего тела тяжелыми. То есть электроны приобретают массы, протоны приобретают массы, фотоны не приобретают массы. Другие частицы приобретают массы. В зависимости от того, какое скалярное поле, они приобретают разную массу.

Но этим дело не кончается. Есть еще и теория Великого объединения, в которой возникает скалярное поле другого типа. Это другое поле. Если бы его не было, то не было бы принципиальной разницы между лептонами и барионами, тогда бы протоны могли легко распадаться на позитроны, не было бы разницы между материей и антиматерией. Для того чтобы объяснить, что там произошло, как эти вещи отделились, пришлось ввести еще одно скалярное поле… В принципе, этих скалярных полей может быть много. Если посмотреть на простейшую теорию - суперсимметричную - теорию Великого объединения, то окажется, что потенциальная энергия в ней рисуется вот так…

Ну, это тоже примерная картинка, на самом деле. Это некоторое поле, которое на самом деле является матрицей. И вот, при одном значении этого поля нету никакого нарушения симметрии между слабым и сильным электромагнитным взаимодействием, нет разницы между лептонами и барионами. Есть другое значение поля, в котором специальный тип нарушения симметрии, совсем не то, что мы видим. Есть третий минимум, в котором как раз физика нашего мира. В действительности надо еще написать вот наше скалярное поле, и если всё вместе написать, то будет десяток таких минимумов. У них у всех в первом приближении одинаковая энергия, и мы живем только в одном из этих минимумов.

И тогда возникает вопрос: а как же мы в этот минимум попали? А в самой ранней Вселенной, когда температура была горячей, существовал только вот этот минимум. И возникала проблема: как же мы тогда просочились вот в этот минимум-то, потому что в ранней Вселенной, в согласии с той теорией, которую мы здесь развивали вместе с Давидом Абрамовичем Киржницем , которому пришла эта идея ему в голову, насчет того, что в ранней Вселенной симметрия между всеми взаимодействиями восстанавливается. И вот тогда мы должны были бы сидеть здесь. А как же мы тогда попали вот сюда? И единственный способ, как мы туда могли попасть, это за счет квантовых флуктуаций, которые генерировались во время инфляции.

Но ведь это скалярное поле тоже скакало и тоже замерзало. И оно могло перескочить в этот минимум, перескочить в этот, перескочить обратно. Потом, если оно перескочило в один из этих минимумов, часть Вселенной, в которую мы попали в этот минимум, она начинала быть экспоненциально большой. Эта начинала быть экспоненциально большой, эта… И Вселенная разбилась на экспоненциально большое количество частей экспоненциально большого размера. Со всеми возможными типами физики в каждой из них.

Что это означает? Что, во-первых, может быть много скалярных полей. Во-вторых, может быть много разных минимумов. И после этого, в зависимости от того, куда мы попали, Вселенная могла стать разбитой на большие, экспоненциально большие области, каждая из которых по всем своим свойствам выглядит - локально - как огромная Вселенная. Каждая из них имеет огромные размеры. Если мы в ней живем, мы не будем знать, что другие части Вселенной существуют. А законы физики, эффективно, там будут разные.

То есть, в действительности, закон физики - он один и тот же может быть, у вас имеется одна и та же теория, - но это так же, как вода, которая может быть жидкой, газообразной, твердой. Но рыба может жить только в жидкой воде. Мы можем жить только вот в этом минимуме. Поэтому мы там и живем. Не потому, что этих частей Вселенной нет, а потому, что мы можем жить только здесь. Вот возникает эта картина, которая и называется «многоликая Вселенная», или «Multiverse» вместо «Universe».

Другим языком. Мы знаем, что наши свойства определяются генетическим кодом - кодом, который нам достался в наследство от наших родителей. Мы знаем также, что существуют мутации. Мутации происходят, когда что-нибудь странное происходит. Когда космические лучи, когда какая-нибудь химия не та - ну, вы лучше меня знаете, что нужно для того, чтобы мутации происходили. А мы знаем также, что всё вот огромное количество видов - необходимо было, чтобы эти мутации были.

Так вот, во время расширения Вселенной тоже были мутации. У вас Вселенная, даже если с самого начала она находилась в одном минимуме, то после этого она начинала прыгать из одного минимума в другой и разбивалась на разные типы Вселенной. И вот этот механизм квантовых флуктуаций, которые перебрасывали Вселенную из одного места, из одного состояния в другое - их можно назвать… это можно назвать механизмом космических мутаций.


(К сожалению, здесь, конечно, не видно часть того, что я собирался показывать. Ну, словами, значит… ) Ландшафт. Возникла такая терминология, потому что эта терминология, эта картинка оказалась очень важной в контексте теории струн. Люди уже давно говорили про теорию струн как лидирующего кандидата на теорию всех взаимодействий. Я в этом месте, к сожалению, «плаваю»… Хотя я и являюсь одним из соавторов вот этой картинки, которая здесь есть. То есть в течение многих лет люди не знали, как с помощью теории струн описать наше четырехмерное пространство.

Дело в том, что теорию струн легче всего сформулировать в десятимерном пространстве. Но в десятимерном пространстве шесть измерений являются лишними, надо как-нибудь от них отделаться. Идея состоит в том, что их надо как-нибудь сжать в маленький клубочек, чтобы их никто не видел, чтобы в шесть направлений никак никто не мог пойти, а мы видели бы только четыре большие измерения - три пространства и одно время. И вот мы гуляли бы в этих трех пространственных измерениях и думали бы, что наша Вселенная трехмерная плюс одно время, а в действительности где-то в сердце Вселенной хранилась бы информация о том, что она происхождение имеет пролетарское - десятимерное. И хотелось бы ей стать десятимерной тоже. Вот в теории струн так всё время получалось, что она хочет быть десятимерной, и до последнего времени не знали, как сделать ее четырехмерной, оставить ее нормальной. Во всех вариантах получалось, что это состояние неустойчивое.

Что бы случилось, если бы в далеком прошлом пространство Вселенной находилось в состоянии ложного вакуума? Если плотность материи в ту эпоху была меньше, чем требуется для уравновешивания Вселенной, тогда доминировала бы отталкивающая гравитация. Это вызвало бы расширение Вселенной, даже если бы первоначально она не расширялась.

Чтобы сделать наши представления более определенными, будем считать, что Вселенная замкнута. Тогда она раздувается подобно воздушному шару. С ростом объема Вселенной материя разрежается, и ее плотность падает. Однако плотность массы ложного вакуума является фиксированной константой; она всегда остается одинаковой. Так что очень быстро плотность материи становится пренебрежимо малой, мы остаемся с однородным расширяющимся морем ложного вакуума.

Расширение вызывается натяжением ложного вакуума, превосходящим притяжение, связанное с плотностью его массы. Поскольку ни одна из этих величин не меняется со временем, темп расширения остается с высокой точностью постоянным. Этот темп характеризуют пропорцией, в которой Вселенная расширяется за единицу времени (скажем, за одну секунду). По смыслу эта величина очень похожа на темп инфляции в экономике - процентное увеличение цен за год. В 1980 году, когда Гут вел семинар в Гарварде, уровень инфляции в США составлял 14%. Если бы это значение оставалось неизменным, цены удваивались бы каждые 5.3 года. Аналогично, постоянный темп расширения Вселенной подразумевает, что существует фиксированный интервал времени, на протяжении которого размер Вселенной увеличивается вдвое.
Рост, который характеризуется постоянным временем удвоения, называют экспоненциальным. Известно, что он очень быстро приводит к гигантским числам. Если сегодня кусок пиццы стоит 1 доллар, то через 1о циклов удвоения (53 года в нашем примере) его цена составит $10^{24}$ доллара, а через 330 циклов достигнет $10^{100}$ долларов. Это колоссальное число, единица, за которой следует 100 нулей, имеет специальное название - гугол. Гут предложил использовать в космологии термин инфляция для описания экспоненциального расширения Вселенной.

Время удвоения для вселенной, заполненной ложным вакуумом, невероятно короткое. И чем выше энергия вакуума, тем оно короче. В случае электрослабого вакуума вселенная расширится в гугол раз за одну тридцатую микросекунды, а в присутствии вакуума Великого объединения это случится в $10^{26}$ раз быстрее. За столь короткую долю секунды область размером с атом раздуется до размеров, намного превосходящих всю наблюдаемую сегодня Вселенную.

Поскольку ложный вакуум нестабилен, он в конце концов распадается, и его энергия зажигает огненный шар из частиц. Это событие обозначает конец инфляции и начало обычной космологической эволюции. Тем самым, из крошечного исходного зародыша мы получаем громадных размеров горячую расширяющуюся Вселенную. А в качестве дополнительного бонуса в этом сценарии удивительным образом исчезают проблемы горизонта и плоской геометрии, характерные для космологии Большого взрыва.

Суть проблемы горизонта состоит в том, что расстояния между некоторыми частями наблюдаемой Вселенной таковы, что они, по-видимому, всегда были больше расстояния, пройденного светом с момента Большого взрыва. Это предполагает, что они никогда не взаимодействовали друг с другом, а тогда трудно объяснить, как они достигли почти точного равенства температур и плотностей. В стандартной теории Большого взрыва путь, пройденный светом, растет пропорционально возрасту вселенной, тогда как расстояние между областями увеличивается медленнее, поскольку космическое расширение замедляется гравитацией. Области, которые не могут взаимодействовать сегодня, смогут влиять друг на друга в будущем, когда свет покроет наконец разделяющее их расстояние. Но в прошлом пройденное светом расстояние становится еще короче, чем надо, так что, если области не могут взаимодействовать сегодня, они тем более не были способны к этому раньше. Корень проблемы, таким образом, связан с притягивающей природой гравитации, из-за которой расширение постепенно замедляется.

Однако во вселенной с ложным вакуумом гравитация отталкивающая, и вместо того, чтобы замедлять расширение, она ускоряет его. При этом положение меняется на противоположное: области, которые могут обмениваться световыми сигналами, в будущем потеряют эту возможность. И, что более важно, те области, которые сегодня недосягаемы друг для друга, должны были взаимодействовать в прошлом. Проблема горизонта исчезает!
Проблема плоского пространства разрешается столь же легко. Оказывается, что Вселенная удаляется от критической плотности, только если ее расширение замедляется. В случае ускоренного инфляционного расширения все обстоит наоборот: Вселенная приближается к критической плотности, а значит, становится более плоской. Поскольку инфляция увеличивает Вселенную в колоссальное число раз, нам видна лишь крошечная ее часть. Эта наблюдаемая область выглядит плоской подобно нашей Земле, которая тоже кажется плоской, если смотреть на нее, находясь вблизи поверхности.

Итак, короткий период инфляции делает Вселенную большой, горячей, однородной и плоской, создавая как раз такие начальные условия, которые требуются для стандартной космологии Большого взрыва.
Теория инфляции начала покорять мир. Что же касается самого Гута, то его пребывание в статусе постдока закончилось. Он принял предложение от своей альма-матер, Массачусетского технологического института, где и продолжает работать поныне.

Отрывок из книги А. Виленкина "Many Worlds in One: The Search for Other Universes"

Сразу после зарождения Вселенная расширялась невероятно быстро.

С 30-х годов XX века астрофизики уже знали, что, согласно закону Хаббла , Вселенная расширяется, а значит, она имела свое начало в определенный момент в прошлом. Задача астрофизиков, таким образом, внешне выглядела простой: отследить все стадии хаббловского расширения в обратной хронологии, применяя на каждой стадии соответствующие физические законы, и, пройдя этот путь до конца — точнее, до самого начала, — понять, как именно всё происходило.

В конце 1970-х годов, однако, оставались нерешенными несколько фундаментальных проблем, связанных с ранней Вселенной, а именно:

  • Проблема антивещества . Согласно законам физики, вещество и антивещество имеют равное право на существование во Вселенной (см. Античастицы), однако Вселенная практически полностью состоит из вещества. Почему так произошло?
  • Проблема горизонта. По фоновому космическому излучению (см. Большой взрыв) мы можем определить, что температура Вселенной везде примерно одинакова, однако отдельные ее части (скопления галактик) не могли находиться в контакте (как принято говорить, они были за пределами горизонта друг друга). Как же получилось, что между ними установилось тепловое равновесие?
  • Проблема распрямления пространства. Вселенная, судя по всему, обладает именно той массой и энергией, которые необходимы для того, чтобы замедлить и остановить хаббловское расширение. Почему из всех возможных масс Вселенная имеет именно такую?

Ключом к решению этих проблем послужила идея, что сразу после своего рождения Вселенная была очень плотной и очень горячей. Всё вещество в ней представляло собой раскаленную массу кварков и лептонов (см. Стандартная модель), у которых не было никакой возможности объединиться в атомы. Действующим в современной Вселенной различным силам (таким, как электромагнитные и гравитационные силы) тогда соответствовало единое поле силового взаимодействия (см. Универсальные теории). Но когда Вселенная расширилась и остыла, гипотетическое единое поле распалось на несколько сил (см. Ранняя Вселенная).

В 1981 году американский физик Алан Гут осознал, что выделение сильных взаимодействий из единого поля, случившееся примерно через 10 -35 секунды после рождения Вселенной (только задумайтесь — это 34 нуля и единица после запятой!), стало поворотным моментом в ее развитии. Произошел фазовый переход вещества из одного состояния в другое в масштабах Вселенной — явление, подобное превращению воды в лед. И как при замерзании воды ее беспорядочно движущиеся молекулы вдруг «схватываются» и образуют строгую кристаллическую структуру, так под влиянием выделившихся сильных взаимодействий произошла мгновенная перестройка, своеобразная «кристаллизация» вещества во Вселенной.

Кто видел, как лопаются водопроводные трубы или трубки автомобильного радиатора на сильном морозе, стоит только воде в них превратиться в лед, тот на собственном опыте знает, что вода при замерзании расширяется. Алану Гуту удалось показать, что при разделении сильных и слабых взаимодействий во Вселенной произошло нечто подобное — скачкообразное расширение. Это расширение, которое называется инфляционным , во много раз быстрее обычного хаббловского расширения. Примерно за 10 -32 секунды Вселенная расширилась на 50 порядков — была меньше протона, а стала размером с грейпфрут (для сравнения: вода при замерзании расширяется всего на 10%). И это стремительное инфляционное расширение Вселенной снимает две из трех вышеназванных проблем, непосредственно объясняя их.

Решение проблемы распрямления пространства нагляднее всего демонстрирует следующий пример: представьте координатную сетку, нарисованную на тонкой эластичной карте, которую затем смяли как попало. Если теперь взять и сильно встряхнуть эту смятую в комок эластичную карту, она снова примет плоский вид, а координатные линии на ней восстановятся, независимо от того, насколько сильно мы деформировали ее, когда скомкали. Аналогичным образом, не важно, насколько искривленным было пространство Вселенной на момент начала ее инфляционного расширения, главное — по завершении этого расширения пространство оказалось полностью распрямленным. А поскольку из теории относительности мы знаем, что кривизна пространства зависит от количества материи и энергии в нем, становится понятно, почему во Вселенной находится ровно столько материи, сколько необходимо, чтобы уравновесить хаббловское расширение.

Объясняет инфляционная модель и проблему горизонта , хотя не так прямо. Из теории излучения черного тела мы знаем, что излучение, испускаемое телом, зависит от его температуры. Таким образом, по спектрам излучения удаленных участков Вселенной мы можем определить их температуру. Такие измерения дали ошеломляющие результаты: оказалось, что в любой наблюдаемой точке Вселенной температура (с погрешностью измерения до четырех знаков после запятой) одна и та же. Если исходить из модели обычного хаббловского расширения, то вещество сразу же после Большого взрыва должно было разлететься слишком далеко, чтобы температуры могли уравняться. Согласно же инфляционной модели, вещество Вселенной до момента t = 10 -35 секунды оставалось гораздо более компактным, чем при хаббловском расширении. Этого чрезвычайно краткого периода было вполне достаточно, чтобы установилось термическое равновесие, которое не было нарушено на стадии инфляционного расширения и сохранилось до сих пор.

Американский физик, специалист в области элементарных частиц и космологии. Родился в Нью-Брюнсвике, штат Нью-Джерси. Докторскую степень получил в Массачусетском технологическом институте, куда в 1986 году и вернулся, став профессором физики. Свою теорию инфляционного расширения Вселенной Гут разработал еще в Стэнфордском университете, занимаясь теорией элементарных частиц . Известен его отзыв о Вселенной как о «бескрайней скатерти-самобранке».

Инфляционная модель Вселенной – научная космологическая теория о законе и состоянии расширения Вселенной на раннем этапе Большого взрыва. В отличие от стандартной модели горячей Вселенной, данная теория предполагает ускоренный период расширения Вселенной на раннем этапе при температуре выше 10 28 Кельвинов.

Инфляционная модель Вселенной была разработана относительно недавно. Еще в 30-х годах 20 века ученые знали, что наша Вселенная непрестанно расширяется. Важную роль в этом сыграло открытие , который указывал на данный факт. Ученые поняли, что процессу расширения Вселенной предшествовало свое начало. По этой причине они решили, применяя физико-математические законы, теоретически воссоздать процесс формирования Вселенной и понять, что именно послужило толчком к ее расширению.

Создавая теорию формирования Вселенной, ученые столкнулись с рядом вопросом, например: почему во Вселенной так мало антивещества, если оно должно состоять с веществом в примерно равных пропорциях; как получилось, что температура всех областей Вселенной примерно одинакова, если отдельные ее части никак не могли контактировать друг с другом; почему Вселенная обладает именно такой массой и энергией, которая способна замедлить хаббловское и многое другое. Занимаясь поиском ответов на эти вопросы, ученые вывели стандартную модель горячей Вселенной, которая гласит, что в самом начале своего зарождения Вселенная была очень плотной и горячей, и в ней существовало единое поле взаимодействия между всеми частицами. Впоследствии, когда Вселенная расширилась и остыла, это поле распалось на электромагнитное, гравитационное, сильное и слабое взаимодействие, которое позволили частицам, из которых состояла первобытная Вселенная, объединяться в атомы и другие сложные структуры.

В 1981 году американский ученый Алан Гут понял, что выделение сильных взаимодействий из единого поля, а также фазовый переход первобытного вещества Вселенной из одного состояния в другое произошел примерно через 10 –35 секунды после рождения Вселенной. Этот период можно условно назвать «первоначальной кристаллизацией Вселенной» или «экстренным расширением Вселенной». В чем-то этот процесс напоминает процедуру замерзания воды и превращения ее в лед. Всем известно, что вода при замерзании расширяется. Алану Гут предположил, что на самом начальном этапе формирования Вселенной произошло ее скачкообразное расширение, благодаря которому Вселенная за крохотные доли секунды расширилась в 50 раз. Свою теорию ученый назвал инфляционной моделью Вселенной (инфляция от англ. Inflate – раздувать, накачивать). При помощи этой модели можно объяснить, почему Вселенная обладает такой массой и энергией, которая позволяет замедлить хаббловское расширение, а также, почему температура всех областей нашей Вселенной примерно одинакова.

Проблема крупномасштабной однородности и изотропности Вселенной

Хаббловское расстояние совпадает с наблюдаемой нами Вселенной. Это говорит нам о том, что из-за конечности возраста нашей Вселенной и скорости света можно наблюдать сейчас только те области Вселенной, которые находятся на равном или меньшем расстоянии горизонта наблюдений.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама