THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Общее понятие об эволюции

Мы часто встречаем в литературе термин «эволюция». Но не всегда можем четко объяснить его значение. Поэтому в данной статье мы рассмотрим вопрос об эволюции вообще и эволюции живых организмов детальнее. Толковый словарь дает такое объяснение данного термина:

Ключевыми моментами в этом определении являются тезисы о необратимости изменений и постепенному (поэтапному) переходу от одного состояния к другому.

В широком смысле можно говорить об эволюции нравов, эволюции моды, подразумевая любое развитие. Теперь детальнее рассмотрим биологическую эволюцию.

Биологическая эволюция

Вспоминая широко известную фазу: «Все течет, все изменяется», мы можем с успехом применить ее и к живым организмам. Они также претерпевают изменения. Процесс эволюции характерен и для них. Современная биология дает такую трактовку понятия эволюции:

Определение 2

«Биологическая эволюция - это естественный необратимый процесс развития живой природы, который сопровождается изменением генетического состава популяций, формированием адаптаций, видообразованием и вымиранием видов, преобразованием экосистем и биосферы в целом».

За время развития науки возникало большое количество теорий, пытавшихся объяснить механизм эволюционных превращений.

Развитие эволюционных взглядов в науке

С самого начала развития человеческого познания сформировался комплекс тесно связанных между собой наук, которые занимались изучением природы. Этот комплекс получил название естествознание.

Уже в античные времена естествоиспытатели (тогда их называли натурфилософами) занимались описанием растений и животных. Длительное время в науке преобладал описательный метод познания. Но зачастую он приводил лишь к бессистемному, хаотическому накоплению научных фактов. Еще Аристотель и Тэофраст попытались систематизировать знания о живых организмах, разделив их на растения и животных. Карл Линней попытался создать стройную систему органического мира. Но длительное время ученые не могли объяснить причины видового многообразия живых организмов, механизм появления изменений в живых организмах.

Метафизические взгляды отрицают изменения в органическом мире. А креационизм предполагает вмешательство некоей силы – «Творца» в создание жизни и живых организмов. Обе теории не могут объяснить наличие ископаемых форм и причины их вымирания.

Теория трансформизма, возникшая на гребне промышленного переворота и социальных преобразований $XVIII – XIX$ веков, уже признавала возможность изменения видов и пыталась объяснить механизм этих изменений.

Идеи трансформизма нашли свое дальнейшее развитие в трудах знаменитого французского ученого Жана-Батиста Ламарка. Он впервые создал целостную теорию исторического развития флоры и фауны. Он активно выступал против метафизического постулата неизменности форм живого.

Ламарк допускал возможность самозарождения жизни из неживой природы. Усложнение организации живых организмов от низшей ступени к высшей в процессе эволюции Ламарк называл градацией. Но во взглядах Ламарка отражалось и идеалистическое мировоззрение. Так, например, эволюцию высших животных он объяснял стремлением к совершенствованию.

Замечание 1

Идеи ламаркизма, открытия в цитологии, достижения палеонтологии и личные наблюдения позволили выдающемуся британскому исследователю Чарльзу Дарвину разработать свою эволюционную теорию. Дарвиновская теория происхождения видов на долгие годы обеспечила биологическую науку надежным теоретическим фундаментом для дальнейших исследований.

Но человеческое познание не стоит на месте. Теория Дарвина уже не может объяснить новые факты. Поэтому в настоящее время общепризнанной является синтетическая теория эволюции (СТЭ). Она представляет собой, синтез классического дарвинизма и популяционной генетики. СТЭ позволяет объяснить связь материала эволюции (генетические мутации) и механизма эволюции (естественный отбор).

В процессе исторического развития одни виды вымирают, другие изменяются и дают начало новым видам. Что же собой представляют виды? Существуют ли виды реально в природе?

Впервые термин "вид" ввел английский ботаник Джон Рей (1628- 1705). Шведский ботаник К. Линней рассматривал вид в качестве основной систематической единицы. Он не был сторонником эволюционных воззрений и считал, что виды со временем не изменяются.

Ж. Б. Ламарк отмечал, что различия между некоторыми видами очень незначительны, и в этом случае выделить виды довольно сложно. Он сделал вывод о том, что виды в природе не существуют, а систематика придумана человеком для удобства. Реально существует только особь. Органический мир представляет собой совокупность особей, связанных между собой родственны ми узами.

Как видно, взгляды Линнея и Ламарка на реальное существование вида были прямо противоположными: Линней считал, чтo виды существуют, они неизменны; Ламарк отрицал реальное существование видов в природе.

В настоящее время общепринята точка зрения Ч. Дарвина: виды реально существуют в природе, но постоянство их относительно; виды возникают, развиваются, а затем либо исчезают, либо изменяются, порождая новые виды.

Вид - это надорганизменная форма существования живой природы. Он представляет собой совокупность морфологически и физиологически сходных особей, свободно между собой скрещивающихся и дающих плодовитое потомство, занимающих определенный ареал и обитающих в сходных экологических условиях. Виды различаются по многим критериям. Критерии, по которым особи относятся к одному виду, представлены в таблице.

Критерии вида

При определении принадлежности особи к какому-либо виду нельзя ограничиваться лишь одним критерием, а необходимо использовать всю совокупность критериев. Так, не возможно ограничиться только морфологическим критерием , поскольку особи одного вида могут различаться внешне. Например, у многих птиц - воробьев, снегирей, фазанов самцы внешне значительно отличаются от самок.

В природе у животных широко распространен альбинизм, при котором в клетках отдельных особей в результате мутации нарушается синтез пигмента. Животные с такими мутациями имеют белую окраску. Глаза у них красные, потому что в радужной оболочке нет пигмента, и сквозь нее просвечивают кровеносные сосуды. Несмотря на внешние отличия, такие особи, например белые вороны, мыши, ежи, тигры, относятся к своим видам, а не выделяются в самостоятельные виды.

В природе существуют внешне почти неразличимые виды-двойники. Так, раньше малярийным комаром называли фактически шесть видов, похожих внешне, но не скрещивающихся между собой и различающихся по другим критериям. Однако из них только один вид питается кровью человека и разносит малярию.

Процессы жизнедеятельности у разных видов часто протекают очень сходно. Это говорит об относительности физиологического критерия . Например, у некоторых видов арктических рыб интенсивность обмена веществ такая же, как и у рыб, обитающих в тропических водах.

Нельзя использовать и один молекулярно-биологический критерий , так как многие макромолекулы (белки и ДНК) обладают не только видовой, но и индивидуальной специфичностью. Поэтому по биохимическим показателям не всегда можно определить, к одному или разным видам относятся особи.

Генетический критерий также не универсален. Во-первых, у разных видов число и даже форма хромосом могут быть одинаковыми. Во-вторых, в одном виде могут быть особи с разным числом хромосом. Так, у одного вида долгоносика имеются диплоидные (2п), триплоидные (Зп), тетраплоидные (4п) формы. В-третьих, иногда особи разных видов могут скрещиваться и давать плодовитое потомство. Известны гибриды волка и собаки, яка и крупного рогатого скота, соболя и куницы. В царстве растений межвидовые гибриды встречаются довольно часто, а иногда бывают и более отдаленные межродовые гибриды.

Нельзя считать универсальным и географический критерий , так как ареалы многих видов в природе совпадают (например,ареал даурской лиственницы и душистого тополя). Кроме того, существуют виды-космополиты, которые распространены повсеместно и не имеют четко ограниченного ареала (некоторые виды сорных растений, комаров, мышей). Ареалы некоторых быстро расселяющихся видов, таких, как домовая муха, изменяются. У многих перелетных птиц различаются ареалы гнездовий и зимовки. Экологический критерий не является универсальным, так как в пределах одного ареала многие виды обитают в очень разных природных условиях. Так, многие растения (например, пырей ползучий, одуванчик) могут жить и в лесу, и на пойменных лугах.

Виды реально существуют в природе. Они относительно постоянны. Виды можно различить по морфологическому, молекулярно-биологическому, генетическому, экологическому, географическому, физиологическому критериям. При определении принадлежности особи к тому или иному виду следует учитывать не один критерий, а весь их комплекс.

Вам известно, что вид состоит из популяций. Популяция представляет собой группу морфологически сходных особей одного вида, свободно скрещивающихся между собой и занимающих определенное место обитания в ареале вида.

Для каждой популяции характерен свой генофонд - совокупность генотипов всех особей популяции. Генофонды разных популяций даже одного вида могут различаться.

Процесс образования новых видов начинается внутри популяции, то есть популяция является элементарной единицей эволюции. Почему же именно популяцию, а не вид или отдельную особь рассматривают как элементарную единицу эволюции?

Особь не может эволюционировать. Она может изменяться, приспосабливаясь к условиям внешней среды. Но эти изменения не эволюционные, так как они не передаются по наследству. Вид, как правило, неоднороден и состоит из ряда популяций. Популяция относительно самостоятельна и может длительное время существовать вне связи с другими популяциями вида. В популяции протекают все эволюционные процессы: у особей возникают мутации, между особями происходит скрещивание, действуют борьба за существование и естественный отбор. В результате генофонд популяции со временем изменяется, и она становится родоначальником нового вида. Именно поэтому элементарная единица эволюции - популяция, а не вид.

Рассмотрим закономерности на следования признаков в популяциях разных типов. Эти закономерности различны для самооплодотворяющихся и раздельнополых организмов. Самооплодотворение особенно часто наблюдается у растений. У самоопыляющихся растений, например гороха, пшеницы, ячменя, овса, популяции состоят из так называемых гомозиготных линий. Чем объясняется их гомозиготность? Дело в том, что при самоопылении увеличивается доля гомозигот в популяции, а доля гетерозигот сокращается.

Чистая линия - это потомки одной особи. Она представляет собой совокупность самоопыляющихся растений.

Начало изучения генетики популяций было положено в 1903 г датским ученым В. Иоганнсеном. Он исследовал популяцию самоопыляемого растения фасоли, легко дающей чистую линию - группу потомков отдельной особи, генотипы которых идентичны.

Иоганнсен взял семена одного сорта фасоли и определил изменчивость одного признака - массы семени. Оказалось, что она варьирует от 150 мг до 750 мг. Ученый высеял отдельно две группы семян: массой от 250 до 350 мг и массой от 550 до 650 мг. Средняя масса семени вновь выросших растений составила в легкой группе 443,4 мг, в тяжелой - 518 мг. Иоганнсен сделал вывод, что исходный сорт фасоли состоит из генетически различных растений.

В течение 6-7 поколений ученый вел отбор семян тяжелых и легких с каждого растения, то есть про водил отбор в чистых линиях. В результате он пришел к выводу, что отбор в чистых линиях не дал сдвига ни в сторону легких, ни в сторону тяжелых семян, значит в чистых линиях отбор не эффективен. А изменчивость массы семян внутри чистой линии является модификационной, ненаследственной и возникает под воздействием условий среды.

Закономерности наследования признаков в популяциях раздельно полых животных и перекрестноопыляемых растений были установлены независимо друг от друга английским математиком Дж Харди и немецким врачом В. Вайнбергом в 1908-1909 гг. Эта закономерность, получившая название закона Харди - Вайнберга, отражает зависимость между частотами аллелей и генотипов в популяциях. Данный за кон объясняет, каким образом в популяции сохраняется генетическое равновесие, то есть число особей с доминантными и рецессивными при знаками остается на определенном уровне.

Согласно этому закону, частоты доминантных и рецессивных аллелей в популяции будут оставаться постоянными из поколения в поколение при наличии определенных условий: высокой численности особей в популяции; свободном их скрещивании; отсутствии отбора и миграции особей; одинаковой численности особей с разными генотипами.

Нарушение хотя бы одного из этих условий ведет к вытеснению одного аллеля (например, А) другим (а). Под действием естественного отбора, популяционных волн и других факторов эволюции особи с доминантным аллелем А будут вытеснять особи с рецессивным аллелем а.

В популяции может измениться соотношение особей с разными генотипами. Предположим, что генетический состав популяции был таким: 20% АА, 50% Аа, 30% аа. Под воздействием факторов эволюции он может оказаться следующим: 40% АА, 50% Аа, 10% аа. Используя закон Харди - Вайнберга, можно вычислить частоту встречаемости любого доминантного и рецессивного гена в популяции, а также любого генотипа.

Популяция - элементарная единица эволюции, так как она обладает относительной самостоятельностью и ее генофонд может изменяться. Закономерности наследования различны в популяциях разных типов. В популяциях самоопыляющихся растений отбор происходит между чистыми линиями. В популяциях раздельнополых животных и перекрестноопыляемых растений закономерности наследования подчиняются закону Харди - Вайнберга.

В соответствии с законом Харди - Вайнберга при относительно постоянных условиях частота аллелей в популяции остается неизменной из поколения в поколение. В этих условиях популяция находится в состоянии генетического равновесия, в ней не происходят эволюционные изменения. Однако в природе нет идеальных условий. Под влиянием факторов эволюции - мутационного процесса, изоляции, естественного отбора и др. - генетическое равновесие в популяции постоянно нарушается, происходит элементарное эволюционное явление - изменение генофонда популяции. Рассмотрим действие различных факторов эволюции.

Один из главных факторов эволюции - мутационный процесс. Мутации были открыты в начале XX в. голландским ботаником и генетиком Де Фризом (1848-1935).

Главной причиной эволюции он считал именно мутации. В то время были известны только крупные мутации, затрагивающие фенотип. Поэтому Де Фриз полагал, что виды возникают в результате крупных мутаций сразу, скачкообразно, без естественного отбора.

Дальнейшие исследования показали, что многие крупные мутации вредны. Поэтому многие ученые считали, что мутации не могут служить материалом для эволюции.

Лишь в 20-х гг. нашего столетия отечественные ученые С. С. Четвериков (1880- 1956) и И. И. Шмальгаузен (1884-1963) показали роль мутаций в эволюции. Было установлено, что любая природная популяция насыщена, как губка, разно образными мутациями. Чаще всего мутации рецессивны, находятся в гетерозиготном состоянии и не проявляются фенотипически. Именно эти мутации и служат генетической ос новой эволюции. При скрещивании гетерозиготных особей эти мутации у потомков могут переходить в гомозиготное состояние. Отбор из поколения в поколение сохраняет особей с полезными мутациями. Полезные мутации сохраняются естественным отбором, вредные - накапливаются в популяции в скрытом виде, создавая резерв изменчивости. Это приводит к изменению генофонда популяции.

Накоплению наследственных различий между популяциями способствует изоляция , благодаря которой между особями разных популяций не происходит скрещивания, а значит, и обмена генетической ин формацией.

В каждой популяции благодаря естественному отбору накапливаются определенные полезные мутации. Через несколько поколений изолированные популяции, обитающие в разных условиях, будут различаться по ряду признаков.

Широко распространена пространственная , или географическая изоляция , когда популяции разделены различными преградами: реками, горами, степями и т. п. Например, даже в близкорасположенных реках обитают разные популяции рыб одного и того же вида.

Различают также экологическую изоляцию , когда особи разных популяций одного вида предпочитают разные места и условия обитания. Так, в Молдавии у желтогорлой лесной мыши образовались лесные и степные популяции. Особи лесных популяций более крупные, пи таются семенами древесных пород, а особи степных популяций - семенами злаков.

Физиологическая изоляция возникает в том случае, когда у особей разных популяций созревание половых клеток происходит в разные сроки. Особи таких популяций не могут скрещиваться. Например, в озере Севан обитают две популяции форели, нерест которых происходит в разные сроки, поэтому они не скрещиваются между собой.

Существует также поведенческая изоляция . Брачное поведение особей разных видов различается. Это препятствует их скрещиванию. Механическая изоляция связана с различиями в строении органов размножения.

Изменение частот аллелей в популяциях может происходить не только под влиянием естественного отбора, но и независимо от него. Частота аллеля может измениться случайным образом. Например, преждевременная гибель особи - единственной обладательницы какого-либо аллеля приведет к исчезновению этого аллеля в популяции. Это явление получило название дрейфа генов .

Важным источником дрейфа генов являются популяционные волны - периодические значительные изменения численности особей популяции. Численность особей изменяется из года в год и зависит от многих факторов: количества пищи, погодных условий, численности хищников, массовых заболеваний и др. Роль популяционных волн в эволюции была установлена С. С. Четвериковым, который показал, что изменение численности особей в популяции влияет на эффективность естественного отбора. Так, при резком сокращении численности популяции могут случайно сохраниться особи с определенным генотипом. Например, в популяции могут сохраниться особи с такими генотипами: 75% Аа, 20% АА, 5% аа. Наиболее многочисленные генотипы, в данном случае Аа, будут определять генный состав популяции до следующей "волны".

Дрейф генов обычно снижает генетическую изменчивость в популяции, главным образом в результате утраты редко встречающихся аллелей. Этот механизм эволюционных изменений особенно эффективен в небольших популяциях. Однако только естественный отбор на основе борьбы за существование способствует сохранению особей с определенным генотипом, соответствующим среде обитания.

Элементарное эволюционное явление - изменение генофонда популяции происходит под влиянием элементарных факторов эволюции - мутационного процесса, изоляции, дрейфа генов, естественного отбора. Однако дрейф генов, изоляция и мутационный процесс не определяют направленности процесса эволюции, то есть выживания особей с определенным, соответствующим среде обитания генотипом. Единственным направляющим фактором эволюции является естественный отбор.

Основные положения эволюционного учения Ч. Дарвина.

  1. Наследственная изменчивость - основа эволюционного процесса;
  2. Стремление к размножению и ограниченность средств жизни;
  3. Борьба за существование - основной фактор эволюции;
  4. Естественный отбор как результат наследственной изменчивости и борьбы за существование.

ФОРМЫ ЕСТЕСТВЕННОГО ОТБОРА

ФОРМА
ОТБОРА
ДЕЙСТВИЕ НАПРАВЛЕННОСТЬ РЕЗУЛЬТАТ ПРИМЕРЫ
Движущий При изменении условий существования организмов В пользу особей, имеющих отклонения от средней нормы Возникает новая средняя форма, более соответствующая изменившимся условиям Возникновение у насекомых устойчивости к ядохимикатам; распространение темноокрашенных бабочек березовой пяденицы в условиях потемнения коры берез от постоянного задымления
Стабилизи
рующий
В неизменных, постоянных условиях существования Против особей с возникающими крайними отклонениями от средней нормы выраженности признака Сохранение и укрепление средней нормы проявления признака Сохранение у насекомоопыляемых растений размеров и формы цветка (цветки должны соответствовать форме и величине тела насекомогоопылителя, строению его хоботка)
Дизруптив
ный
В изменяющихся условиях жизни В пользу организмов, имеющих крайние отклонения от средней выраженности признака Образование новых средних норм вместо прежней, переставшей соответствовать условиям жизни При частых сильных ветрах на океанических островах сохраняются насекомые с хорошо развитыми или с рудиментарными крыльями

ВИДЫ ЕСТЕСТВЕННОГО ОТБОРА

Задачи и тесты по теме "Тема 14. "Эволюционное учение"."

  • Проработав эти темы, Вы должны уметь:

    1. Сформулировать своими словами определения: эволюция, естественный отбор, борьба за существование, адаптация, рудимент, атавизм, идиоадаптация, биологический прогресс и регресс.
    2. Кратко описать, каким образом та или иная адаптация сохраняется отбором. Какую роль играют в этом гены, генетическая изменчивость, частота генов, естественный отбор.
    3. Объяснить, почему в результате отбора не образуется популяция идентичных, безупречно адаптированных организмов.
    4. Сформулировать, что такое генетический дрейф; привести пример ситуации, в которой он играет важную роль, и объяснить, почему его роль особенно велика в небольших популяциях.
    5. Описать два способа возникновения видов.
    6. Сравнивать естественный и искусственный отбор.
    7. Кратко перечислить ароморфозы в эволюции растений и позвоночных, идиоадаптация в эволюции птиц и млекопитающих, покрытосеменных растений.
    8. Назвать биологические и социальные факторы антропогенеза.
    9. Сравнивать эффективность потребления растительной и животной пищи.
    10. Кратко описать черты древнейшего, древнего, ископаемого человека, человека современного типа.
    11. Указать черты развития и сходства человеческих рас.

    Иванова Т.В., Калинова Г.С., Мягкова А.Н. "Общая биология". Москва, "Просвещение", 2000

    • Тема 14. "Эволюционное учение." §38, §41-43 стр. 105-108, стр.115-122
    • Тема 15. "Приспособленность организмов. Видообразование." §44-48 стр. 123-131
    • Тема 16. "Доказательства эволюции. Развитие органического мира." §39-40 стр. 109-115, §49-55 стр. 135-160
    • Тема 17. "Происхождение человека." §49-59 стр. 160-172

Естественное явление изменения популяций, видов, высших таксонов, биоценозов, флора и фауна, генов и признаков во времени в ходе истории Земли.

Научные теории эволюции объясняют, как происходит эволюция, которые ее механизмы.

Общая характеристика

Строго говоря, биологическая эволюция — процесс изменения с течением времени в наследственных характеристиках, или поведении популяции живых организмов. Наследственные вехи есть закодированные в генетическом материале организма (обычно ДНК). Эволюция согласно синтетической теории эволюции, прежде всего, является следствием трех процессов: случайных мутаций генетического материала, случайного генетического отклонения (англ. Genetic drift) и не случайного естественного отбора в пределах групп и видов.

Естественный отбор, один из процессов, который управляет эволюцией, является результатом различий в шансах на воспроизведение между особями популяции. Это обязательно следует из следующих фактов:

  • Естественная, наследственная вариация существует в пределах групп и среди видов
  • Организмы надродючи (количество потомков превышает предел гарантированного выживания)
  • Организмы в отличные по способности выжить и возродиться
  • В любом поколении, те, что воспроизводятся успешно обязательно передают свои наследственные цихи к следующему поколению, когда же неудачные воспроизводители этого не делают.

Если свойства увеличивают эволюционную пригодность индивидуумов, которые несут их, то те индивидуумы вероятнее выживают и воспроизводятся, чем другие организмы популяции. Так они передают больше копий удачных наследственных черт к следующему поколению. Соответствующее уменьшение пригодности из-за вредных цихи приводит к их зридшення. Со временем, это может приводить к приспособлению: постепенное накопление новых этих (и сохранение существующих, которые в целом приспосабливают популяцию живых организмов к их окружения и экологической ниши.

Хотя естественный отбор не случаен по своей форме действия, другие капризны силы имеют сильное влияние на процесс эволюции. В поло воспроизводимых организмах, случайное генетическое отклонение приводит к наследственным этих, которые становятся достаточно общими просто благодаря стечению обстоятельств и случайном спариванию. Этот бесцельный процесс может быть влиятельными от естественного отбора в определенных ситуациях (особенно в маленьких группах).

В разных окружениях, естественный отбор, случайные генетические отклонения и крошка случайности в мутациях, которые появляются и хранятся, могут заставить различные группы (или части группы) эволюционировать в разных направлениях. При достаточном разногласия, две группы поло воспроизводимых организмов могут стать достаточно отличными, чтобы образовать отдельные вид, особенно, если способность к межвидового скрещивания между двумя группами потеряно.

Опыты показывают, что все живые организмы на Земле имеют общего предка. Этот вывод был сделан, основываясь на общей наличии Л-аминовых кислот в белках, наличия общего генетического кода во всех живых существ, возможности классификации по наследству по категориям, вкладываемые, гомологии последовательностей ДНК и общности найпидставовиших биологических процессов.

Хотя первые упоминания об идее эволюции достигают давности, новейшей, современной формы она приобрела в трудах Альфреда Уоллеса и Чарльза Дарвина в их совместной статье в Линнеевського общества в Лондоне (Linnean Society of London) и позже в книге Дарвина «Происхождение видов» (1859). В 1930-х гг. Синтетическая теория эволюции объединила эволюционную теорию с генетикой Грегора Менделя.

Эволюция организмов происходит из-за изменений в наследственных признаках. Например, цвет глаз у человека есть наследственным признаком, которую индивид получает от своих родителей. Наследственные признаки контролируются генами. Совокупность генов одного организма является его генотипом.

Совокупность всех признаков, формирующих структуру и поведение организма называется фенотипом. Эти признаки возникают в результате взаимодействия генотипа этого организма с условиями внешней среды. То есть не каждый фенотипической признак организма наследуется. Например, загар обусловлена ​​взаимодействием генотипа человека с солнечным светом, таким образом загар не успадкуеться. В общем, люди загорают по-разному, что следует из их генотипа. Например, у некоторых людей присутствует такая наследственный признак как альбинзим. Альбиносы не загорают и очень чувствительны к солнечному излучению — они легко получают солнечные ожоги.

Причины эволюции

Матричное копирование с ошибками

В основе жизни на Земле лежит процесс копирования молекул нуклеиновых кислот — ДНК и РНК. Процесс копирования осуществляется матричным принципом комплементарности: одна молекулы нуклеиновой кислоты может образовать парную для себя, а с этой парной молекулы считывается молекула, идентична исходной. Таким образом, молекулы ДНК и РНК способны к неограниченному размножению.

При копировании непременно возникают ошибки из-за несовершенства системы репликации. Через эти ошибки копии ДНК и РНК содержат небольшие различия, которые, однако, нарастают с течением времени. Такой процесс самовитворення с изменениями называют конвариантною редупикациею.

К неограниченного воспроизведения с ошибками способны некоторые неодушевленные системы, например, кристаллы или некоторые химические циклы. Но живое отличается тем, что может передавать эти ошибки в неизменном виде следующим поколениям. Эти ошибки, или мутации, практически не меняют физико-химические свойства молекул нуклеиновых кислот, но влияют на информацию, считывается из них живыми организмами. Таким образом, живые организмы проявляют наследственность и изменчивость своих признаков, к которым приводят соответственно копирования и мутации в молекулах нуклеиновых кислот.

Гомеостаз и стабильность онтогенеза

Постоянное воспроизводство ДНК с ошибками приводит к тому, что имеется в каждой молекуле генетическая информация со временем сильно меняется. Современные живые организмы имеют системы защиты от избыточного изменения последовательности нуклеотидов молекулы ДНК. К ним относятся ферменты репарации, подавители мобильных элементов генома, противовирусные защитные механизмы и т.

Тем не менее, гены все равно передаются в следующее поколение с некоторыми изменениями, в результате чего популяция живых организмов одного вида обычно не содержит особей, в которых вся последовательность ДНК одинакова. При этом фенотипическая изменчивость зачастую меньше генетическую, поскольку взаимодействия между различными генами в онтогенезе подавляют влияние изменений в отдельных генах. Таким образом, многоклеточные организмы достигают стабильности индивидуального развития, приводит к сохранению видового нормы.

Выборочное выживания и размножения

Молекулы РНК и ДНК, а также живые организмы размножаются с разной эффективностью в зависимости от собственных свойств и условий окружающей среды. Организмы могут погибнуть, не дожив до времени размножения, а те, что выжили, оставляют разное количество потомков. Те организмы, выживших и эффективно размножились, смогли это сделать через две группы причин: соответствие их вариантов генов условиям среды или стечения обстоятельств, не связанные с «качеством» аллелей. Согласно влияние первой группы на распространение аллелей в популяции описывается понятием естественный отбор, а второй группы — понятием генетический дрейф.

Естественный отбор

Естественный отбор — это выборочное переживания (длительное выживание) и размножения наиболее приспособленных к условиям окружающей среды особей в популяции. Чем больше приспособлена растение или животное, тем больше вероятность ее дожития до репродуктивного периода, а также тем больше потомков она оставит. Приспособленность зависит от наличия в генотипе особи аллелей генов, способствующих переживанию и размножению. Поскольку все организмы в популяции имеют различные генотипы, то при стабильных условиях количество носителей более выгодных в этих условиях аллелей генов будет расти в поколениях.

Кроме того, условия среды создают конкуренцию за выживание и размножение между организмами. В связи с этим, организмы, обладающие аллелями, которые предоставляют им преимущество перед их конкурентами, передают эти аллели потомкам. Аллели, которые не предоставляют такого преимущества, не передаются следующим поколениям.

Генетический дрейф

Дрейф генов — это процесс изменений частоты аллелей, который вызывается причинами, которые не связаны с влиянием аллелей на приспособленность особей. Поэтому генетический дрейф относят к нейтральным механизмов эволюции генов и популяций. Соотношение между влиянием естественного отбора и дрейфа генов в популяции меняется в зависимости в силу отбора и эффективного размера популяции (число особей, способных к размножению). Естественный отбор обычно играет большую роль в больших популяциях, а дрейф генов преобладает в малых. Преобладание дрейфа генов в малых популяциях может даже приводить к фиксации вредных мутаций. Как результат, изменение численности популяции может значительно изменять ход эволюции. Эффект бутылочного горлышка, когда численность популяции резко снижается и в результате теряется генетическое разнообразие, приводит к большей однородности популяций.

Общий ход эволюции

Первые следы жизни на Земле датированы 3,5-3,8 млрд лет назад. Это остатки прокариотических жизни — строматолиты. Около 3 млрд лет назад появляются первые фотосинтетики, которыми были цианобактерии. Первые эукариот появились около 1,6-1,8 млрд лет назад. Это приводит к «кислородной катастрофы» — резкое повышение концентрации кислорода в атмосфере Земли. Многоклеточные эукариот возникали многократно в разных группах, однако первые надежные окаменелости имеют возраст около 750 млн лет назад (криогеновий период), а появление разнообразной океанической биоты связана с Вендский периодом (едиакарська биота, около 600 млн лет назад). Появление скелетных животных и их богатых остатков произошла в кембрийском периоде около 550-520 млн лет назад. Тогда появилось большинство современных типов животных.

В силурийском периоде растения впервые вышли на сушу. В девоне на суше поселились первые земноводные и членистоногие животные. В пермском периоде появились рептилии, которые доминировали на Земле на протяжении мезозойской эры. Несколько групп терапсидних рептилий дальше начало млекопитающим. В меловом периоде появились птицы и начался расцвет цветковых растений. В кайнозойскую эру доминировали млекопитающие, а также достигли расцвета насекомые. В антропогене одна из групп приматов, гоминиды дала начало эволюции человека. В плейстоцене-голоцении человек становится геологической силой, влияющей на эволюцию всей биосферы.

Свойства эволюции

Ход эволюции жизни обнаруживает несколько сквозных закономерностей, которые являются объективными и часто описаны математически. Эволюционная биология изучает дополнительные механизмы эволюции или новые возможности реализации исходных принципов, которые позволят коренным образом понять сущность этих закономерностей. Основные свойства эволюции таковы: появление адаптированных к среде организмов, морфо-функциональный прогресс, появление новых органов и структур (эмерджентность), переход к половому размножению, вымирание видов, рост биоразнообразия.

Адаптация

Современные виды выглядят хорошо приспособленными к условиям среды, в которой они существуют. При этом адаптации ограничены той средой, где они обычно используются: при перемещении организма в новую среду он часто становится полностью неприспособленным или по крайней мере менее приспособленным, чем «коренные» жители других условий. До появления эволюционной картины мира достаточно четкое соответствие свойств организма условиям его «родного» среды настолько поражала исследователей, они считали ее следствием действия сверхъестественных сил. Тем не менее, адаптация является почти обязательным следствием эволюции, поскольку менее адаптированы к условиям среды организмы делают все меньший вклад в генетическое разнообразие популяции благодаря естественному отбору. Вместе с тем, происхождение самых адаптаций необязательно зависит от отбора, а может быть побочным следствием других адаптаций или вообще стечению обстоятельств (следствием генетического дрейфа).

Прогресс и автономизация

В ходе эволюции безъядерные бактериальные клетки дают начало сложным клеткам эукариот. Эукариот в дальнейшем приобретают многоклеточности, образуют ткани и органы. Животные развивают нервную систему, имеют сложное поведение, которая позволяет им выживать во многих средах. Человек как верхушка эволюции животных достигла возможности жить в любых средах, в том числе и внеземных.

Эмерджентность

По ходу эволюции часто происходит перекомбинация частей организмов и генов, изменение функции старых структур. Однако некоторые процессы и части организмов возникали впервые. Фотосинтез у цианобактерий, белки репликации ДНК, аппарата трансляции, чешуя рыб и тому подобное.

Раздельнополость

Первые животные были гермафродитами, а среди высших гермафродитов почти нет.

Пол и рекомбинация

В бесполых организмов гены наследуются вместе (они привитыми) и не смешиваются с генами других индивидов во время размножения. Потомки же половых организмов содержат случайную смесь хромосом их родителей за счет независимого сортировки. В течение родственного процесса гомологичной рекомбинации половые организмы обмениваются ДНК между двумя гомологичными хромосомами. Рекомбинация и независимое сортировки не меняют частот аллелей, но меняют их ассоциативность друг с другом, производя потомков с новыми комбинациями аллелей. Пол обычно увеличивает генетическую изменчивость и может увеличить скорость эволюции. Однако, бесполость может иметь преимущества в определенных условиях, поскольку в некоторых организмов она эволюционировала повторно. Бесполость может позволить двум наборам аллелей генома дивергуваты и, как следствие, привести к возникновению новых функций. Рекомбинация позволяет равноправным аллелям, которые находятся вместе наследоваться независимо. Однако частота рекомбинаций низкая (примерно два случая в одну хромосому за одно поколение). Как результат, гены, размещаются рядом на одной хромосоме не всегда розтасовуються друг от друга в процессе генетической рекомбинации и имеют тенденцию наследоваться вместе. Этот феномен носит название сцепления генов. Сцепление генов оценивается путем измерения частоты появления двух аллелей на одной хромосоме (измерение неравновесного сцепления генов). Набор аллелей, которые обычно успадковуютсья вместе называется гаплотипом. Это имеет важное значение когда один из аллелей определенного гаплотипа предоставляет большое преимущество в борьбе за существование: положительный естественный отбор приведет селективное чистки (англ. Selective sweep), которое приведет к тому, что частота других аллелей этого гаплотипа тоже возрастет. Этот эффект называется генетическим автостопом (генетический хитчхайкинг). Когда аллели не могут быть разделены за счет рекомбинации (например в Y-хромосоме млекопитающих), тогда происходит аккумуляция вредных мутаций (см. Храповик Мюллера). Изменяя комбинации аллелей, половое размножение приводит изъятие вредных и распространение полезных мутаций в популяции. Кроме того рекомбинация и сортировки генов могут обеспечивать организмы новыми выгодными комобинациямы генов. Но этот положительный эффект балансуетсья тем, что пол снижает скорость размножения (см. Эволюция полового размножения) и может вызывать разрушение выгодных комбинаций генов. Причины эволюционирования полового размножения до сих пор остаются не совсем понятными и этот вопрос пока активной областью исследований в области эволюционной биологии. Оно стимулировало новые идеи о механизмах эволюции, например гипотезу Красной Королевы.

Вымирание

В истории Земли неоднократно происходили массовые вымирания живых организмов. Такими были вымирания на границе вендского и кембрийского периода, когда погибла едиакарська биота, пермского и триасового периодов, мелового и эоценового периодов. После массовой гибели старых групп организмов начинался расцвет тех групп, которые пережили вымирание. Вымирание меньших масштабов, такие как пост-ледниковое вымирания крупных млекопитающих после последнего ледникового периода, тоже приводят к изменению групп организмов. Человек привела к вымиранию видов, наиболее уязвимых к ее техногенной деятельности.

Рост биоразнообразия

Палеонтологические находки, несмотря на свою неполноту и ограниченность, демонстрируют наличие роста биоразнообразия как в океане, так и на суше.

Уровни эволюции

На разных уровнях организации живого свойства эволюции и ее механизмы играют разную роль.

  • генный
  • геномный
  • популяционный
  • видовой
  • таксонний
  • экосистемный
  • биосферный

Мутации

Генетическая вариация возникает за счет случайных мутаций, возникающих в геномах организмов. Мутации — это изменения в последовательности нуклеотидов ДНК, вызываемых радиоактивным излучением, вирусами, транспозонами, химическими мутагенами, а также ошибками копирования, которые возникают во время мейоза или репликации ДНК. Эти мутагены производят несколько различных типов изменений в последовательности нуклеотидов ДНК: они могут не вызвать никакого эффекта, изменять продукт гена, или вообще прекратить функционирование гена. Исследования на дрозофилах показали, что если мутации вызывают изменения белка, который кодируется определенным геном, то последствия скорее всего будут губительными. Примерно 70% таких мутаций приводят к определенным нарушениям, остальные являются нейтральными или полезными. Поскольку мутации часто вредно влияют на клетки, то в процессе эволюции у организмов возникли механизмы репарации ДНК, которые устраняют мутации. Таким образом, оптимальная частота мутаций это компромисс между платой за высокую частоту вредных мутаций и платой за метаболические затраты (например, синтез ферментов репарации) для уменьшения этой частоты. Некоторые организмы, например ретровирусы, имеют такую ​​высокую частоту мутаций, почти каждый их потомок будет владеть мутированным геном. Такая высокая частота мутаций может быть преимуществом, поскольку эти вирусы эволюционируют очень быстро, таким образом избегая ответов иммунной системы.

Мутации могут включать значительные участки ДНК, например дупликации генов, является сырым материалом для эволюции новых генов. У животных в среднем за каждый миллион лет происходят дупликации от десятков до сотней генов. Большинство генов, которые имеют общий предковый ген, принадлежат к одной генетической семьи. Новые гены образуются несколькими способами, в целом за счет дупликации предковых генов, либо за счет рекомбинации частей различных генов, в результате чего формируются новые комбинации нуклеотидов с новыми функциями. Новые гены формируют новые белки с новыми функциями. Например, для формирования структур глаза человека, которые ответственны за восприятие света используются четыре гена: трех для цветного зрения (колбочки) и один для ночного (палочки) все эти гены произошли от одного предкового гена. Другое преимущество дупликации гена, или даже целого генома состоит в том, что увеличивается избыточность (избыточность) генома; это позволяет одному гену приобретать новых функций, в то время как копия этого гена выполняет начальную функцию. Изменения в хромосомах могут проходить в результате крупных мутаций, когда сегменты ДНК внутри хромосомы отделяются, а затем снова встраиваются в другом месте хромосомы. Нариклад, две хромосомы рода Homo слились с образованием хромосомы 2 человека. Это слияние не состоялось в филогенетических рядах других обезьян, то есть они имеют эти хромосомы разделенными. Важнейшей ролью таких хромосомных перестроек в эволюции является ускорение дивергенции популяций с формированием новых видов за счет того, что происходит меньше межпопуляционных скрещиваний.

Последовательности ДНК, которые могут перемещаться по геному (Мобильные генетические элементы), такие как транспозонов, формируют большую часть генетического материала генетического материала растений и животных и имеют важное значение в эволюции геномов. Например, более миллиона последовательностей Alu представлены в геноме человека и сейчас эти последовательности служат для выполнения регуляции экспрессии генов. Другой эффект этих мобильных ДНК состоит в том, что они могут вызывать мутации существующих генов, или даже удалять их, увеличивая таким образом генетическое разнообразие.

Проблема происхождения жизни

Признание эволюции Католической церковью

Католическая церковь признала в энциклике папы Пия XII лат. Humani Generis, что теория эволюции может объяснять происхождение тела человека (но не его души), призвав, однако, к осторожности в суждениях и назвав теорию эволюции гипотезой. 1996 Папа Иоанн Павел II в послании к Папской академии наук подтвердил признание теистического эволюционизма как допустимой для католицизма позиции, заявив, что теория эволюции — это более чем гипотеза. Поэтому среди католиков буквальный, младоземельный, креационизм жидкий (в качестве одного из немногочисленных примеров можно привести Дж. Кина). Склоняясь к теистического эволюционизма и теории «разумного замысла», католицизм в лице своих высших иерархов, в том числе и выбранного 2005 папы Бенедикта XVI, тем не менее, безусловно отвергает эволюционизм материалистический.

Эволюция — процесс развития, состоящий из постепенных изменений, без резких скачков (в противовес революции). Чаще всего, говоря об эволюции, имеют ввиду биологическую эволюцию.

Биологическая эволюция — необратимое и направленное историческое развитие живой природы, сопровождающееся изменением генетического состава популяций, формированием адаптаций, образованием и вымиранием видов, преобразованием экосистем и биосферы в целом. Биологическая эволюция изучается эволюционной биологией.

Существует несколько эволюционных теорий, общим для которых является утверждение, что ныне живущие формы жизни являются потомками других форм жизни, существовавших ранее. Эволюционные теории отличаются объяснением механизмов эволюции. В данный момент наиболее распространённой является т.н. синтетическая теория эволюции, являющаяся развитием теории Дарвина.

Гены, которые передаются потомству, в результате выражения образуют сумму признаков организма (фенотип). При воспроизведении организмов у их потомков появляются новые или изменённые признаки, которые возникают в результате мутации или при переносе генов между популяциями или даже видами. У видов, которые размножаются половым путём, новые комбинации генов возникают при генетической рекомбинации. Эволюция происходит, когда наследственные различия становятся более частыми или редкими в популяции.

Эволюционная биология изучает эволюционные процессы и выдвигает теории для объяснения их причин. Изучение окаменелостей и разнообразия видов живых организмов к середине XIX века убедило большинство учёных, что виды изменяются с течением времени. Однако механизм этих изменений оставался неясен до публикации в 1859 году книги Происхождение видов английского учёного Чарльза Дарвина о естественном отборе как движущей силе эволюции. Теория Дарвина и Уоллеса, в конечном итоге, была принята научным сообществом. В 30-х годах прошлого века идея дарвиновского естественного отбора была объединена с законами Менделя, которые сформировали основу синтетической теории эволюции (СТЭ). СТЭ позволила объяснить связь субстрата эволюции (гены) и механизма эволюции (естественный отбор).

Наследственность

Наследственность, присущее всем организмам свойство повторять в ряду поколений одинаковые признаки и особенности развития; обусловлено передачей в процессе размножения от одного поколения к другому материальных структур клетки, содержащих программы развития из них новых особей. Тем самым наследственность обеспечивает преемственность морфологической, физиологической и биохимической организации живых существ, характера их индивидуального развития, или онтогенеза. Как общебиологическое явление наследственность — важнейшее условие существования дифференцированных форм жизни, невозможных без относительного постоянства признаков организмов, хотя оно нарушается изменчивостью — возникновением различий между организмами. Затрагивая самые разнообразные признаки на всех этапах онтогенеза организмов, наследственность проявляется в закономерностях наследования признаков, т. е. передачи их от родителей потомкам.

Иногда термин «Наследственность» относят к передаче от одного поколения другому инфекционных начал (так называемая инфекционная наследственность) или навыков обучения, образования, традиций (так называемая социальная, или сигнальная, наследственность). Подобное расширение понятия наследственность за пределы его биологической и эволюционной сущности спорно. Лишь в случаях, когда инфекционные агенты способны взаимодействовать с клетками хозяина вплоть до включения в их генетический аппарат, отделить инфекционную наследственность от нормальной затруднительно. Условные рефлексы не наследуются, а заново вырабатываются каждым поколением, однако роль наследственность в скорости закрепления условных рефлексов и особенностей поведения бесспорна. Поэтому в сигнальную наследственность входит компонент биологической наследственности.

Изменчивость

Изменчивость — это разнообразие признаков и свойств у особей и групп особей любой степени родства. Присуща всем живым организмам. Различают изменчивость наследственную и не наследственную, индивидуальную и групповую, качественную и количественную, направленную и ненаправленную. Наследственная изменчивость обусловлена возникновением мутаций, не наследственная — воздействием факторов внешней среды. Явления наследственности и изменчивости лежат в основе эволюции.

Мутация

Мутация — случайно возникшие, стойкие изменения генотипа,затрагивающие целые хромосомы, их части или отдельные гены. Мутации могут быть крупными, хорошо заметными, например отсутствие пигмента (альбинизм), отсутствие оперения у кур, короткопалость и др. Однако чаще всего мутационные изменения — это мелкие, едва заметные уклонения от нормы.

Мутации событие достаточно редкое. Частота возникновения отдельных спонтанных мутаций выражается числом гамет одного поколения, несущих определенную мутацию, по отношению к общему числу гамет.

Мутации возникают, в основном, в результате действия двух причин: спонтанных ошибок репликации последовательности нуклеотидов и действия различных мутагенных факторов, вызывающих ошибки репликации.

Мутации, вызванные действием мутагенов (облучение, химические вещества, температура и др.) , называют индуцированными, в отличие от спонтанных мутаций, происходящих при случайных ошибках действия ферментов, обеспечивающих репликацию, или (и) в результате тепловых колебаний атомов в нуклеотидах.

Типы мутаций. По характеру изменения генетического аппарата мутации делят на геномные, хромосомные и генные, или точковые. Геномные мутации заключаются в изменении числа хромосом в клетках организма. К ним относятся: полиплоидия — увеличение числа наборов хромосом, когда вместо обычных для диплоидных организмов 2 наборов хромосом их может быть 3, 4 и т. д.; гаплоидия — вместо 2 наборов хромосом имеется лишь один; анеуплоидия — одна или несколько пар гомологических хромосом отсутствуют (нуллисомия) или представлены не парой, а лишь одной хромосомой (моносомия) либо, напротив, 3 или более гомологичными партнёрами (трисомия, тетрасомия и т. д.). К хромосомным мутации, или хромосомным перестройкам, относятся: инверсии — участок хромосомы перевёрнут на 180°, так что содержащиеся в нём гены расположены в обратном порядке по сравнению с нормальным; транслокации — обмен участками двух или более негомологичных хромосом; делеции — выпадение значительного участка хромосомы; нехватки (малые делеции) — выпадение небольшого участка хромосомы; дупликации — удвоение участка хромосомы; фрагментации — разрыв хромосомы на 2 части или более. Генные мутации представляют собой стойкие изменения химического строения отдельных генов и, как правило, не отражаются на наблюдаемой в микроскоп морфологии хромосом. Известны также мутации генов, локализованных не только в хромосомах, но и в некоторых самовоспроизводящихся органеллах цитоплазмы (например, в митохондриях, пластидах).

Причины мутаций и их искусственное вызывание. Полиплоидия чаще возникает, когда хромосомы в начале клеточного деления — митоза — разделились, но деления клетки почему-либо не произошло. Искусственно полиплоидию удаётся вызвать, воздействуя на вступившую в митоз клетку веществами, нарушающими цитотомию. Реже полиплоидия бывает следствием слияния 2 соматических клеток или участия в оплодотворении яйцеклетки 2 спермиев. Гаплоидия — большей частью следствие развития зародыша без оплодотворения. Искусственно её вызывают, опыляя растения убитой пыльцой или пыльцой др. вида (отдалённого). Основная причина анеуплоидии — случайное нерасхождение пары гомологичных хромосом при мейозе, в результате чего обе хромосомы этой пары попадают в одну половую клетку или в неё не попадает ни одна из них. Реже возникают анеуплоиды из немногих оказавшихся жизнеспособными половых клеток, образуемых несбалансированными полиплоидами.

Причины хромосомных перестроек и наиболее важной категории мутации — генных — долгое время оставались неизвестными. Это давало повод для ошибочных автогенетических концепций, согласно которым спонтанные генные Мутации возникают в природе якобы без участия воздействий окружающей среды. Лишь после разработки методов количественного учёта генных мутации выяснилась возможность вызывать их различными физическими и химическими факторами — мутагенами.

Рекомбинация

Рекомбинация - перераспределение генетического материала родителей в потомстве, приводящее к наследственной комбинативной изменчивости живых организмов. В случае несцепленных генов (лежащих в разных хромосомах) это перераспределение может осуществляться при свободном комбинировании хромосом в мейозе, а в случае сцепленных генов — обычно путём перекреста хромосом — кроссинговера. Рекомбинация — универсальный биологический механизм, свойственный всем живым системам — от вирусов до высших растений, животных и человека. Вместе с тем в зависимости от уровня организации живой системы процесс Рекомбинация (генетич.) имеет ряд особенностей. Проще всего рекомбинация происходит у вирусов: при совместном заражении клетки родственными вирусами, различающимися одним или несколькими признаками, после лизиса клетки обнаруживаются не только исходные вирусные частицы, но и возникающие с определённой средней частотой частицы-рекомбинанты с новыми сочетаниями генов. У бактерий существует несколько процессов, заканчивающихся рекомбинация: конъюгация, т. е. объединение двух бактериальных клеток протоплазменным мостиком и передача хромосомы из донорской клетки в реципиентную, после чего происходит замена отдельных участков хромосомы реципиента на соответствующие фрагменты донора; трансформация — передача признаков молекулами ДНК, проникающими из среды сквозь клеточную оболочку; трансдукция — передача генетического вещества от бактерии-донора к бактерии-реципиенту, осуществляемая бактериофагом. У высших организмов рекомбинация происходит в мейозе при образовании гамет: гомологичные хромосомы сближаются и устанавливаются бок о бок с большой точностью (т. н. синапсис), затем происходит разрыв хромосом в строго гомологичных точках и перевоссоединение фрагментов крест-накрест (кроссинговер). Результат рекомбинация обнаруживается по новым сочетаниям признаков у потомства. Вероятность кроссинговера между двумя точками хромосом приблизительно пропорциональна физическому расстоянию между этими точками. Это даёт возможность на основании экспериментальных данных по рекомбинация строить генетические карты хромосом, т. е. графически располагать гены в линейном порядке в соответствии с их расположением в хромосомах, и притом в определённом масштабе. Молекулярный механизм рекомбинация детально не изучен, однако установлено, что ферментативные системы, обеспечивающие рекомбинация, принимают участие и в таком важнейшем процессе, как исправление повреждений, возникающих в генетическом материале. После синапсиса вступает в действие эндонуклеаза — фермент, осуществляющий первичные разрывы в цепях ДНК. По-видимому, эти разрывы у многих организмов происходят в структурно детерминированных участках — рекомбинаторах. Далее происходит обмен двойными или одинарными цепями ДНК и в заключение специальные синтетические ферменты — ДНК-полимеразы — заполняют бреши в цепях, а фермент лигаза замыкает последние ковалентные связи. Ферменты эти выделены и изучены лишь у некоторых бактерий, что позволило приблизиться к созданию модели рекомбинация in vitro (в пробирке). Одно из важнейших следствий рекомбинация — образование реципрокного потомства (т. е. при наличии двух аллельных форм генов АВ и ав должны получиться два продукта рекомбинации — Ав и aB в равных количествах). Принцип реципрокности соблюдается, когда рекомбинация происходит между достаточно удалёнными точками хромосомы. При внутригенной рекомбинации это правило часто нарушается. Последнее явление, изученное главным образом на низших грибах, называется генной конверсией. Эволюционное значение рекомбинация заключается в том, что благоприятными для организма часто оказываются не отдельные мутации, а их комбинации. Однако одновременное возникновение в одной клетке благоприятного сочетания из двух мутаций маловероятно. В результате рекомбинации осуществляется сочетание мутаций, принадлежащих двум независимым организмам, и тем самым ускоряется эволюционный процесс.

Механизмы эволюции

Естественный отбор

Существуют два основных эволюционных механизма. Первый — это естественный отбор, то есть процесс, в результате которого наследственные признаки, благоприятные для выживания и размножения, распространяются в популяции, а неблагоприятные становятся более редкими. Это происходит потому, что особи с благоприятными признаками размножаются с большей вероятностью, поэтому больше особей следующего поколения имеют те же признаки. Адаптации к окружающей среде возникают в результате накопления последовательных, мелких, случайных изменений и естественного отбора варианта, наиболее приспособленного к окружающей среде.

Генетический дрейф

Второй основной механизм — это генетический дрейф, независимый процесс случайного изменения в частоте признаков. Генетический дрейф происходит в результате вероятностных процессов, которые обуславливают случайные изменения в частоте признаков в популяции. Хотя изменения в результате дрейфа и селекции в течение одного поколения довольно малы, различие в частотах накапливаются в каждом последующем поколении и со временем приводят к значительным изменениям в живых организмах. Этот процесс может завершиться образованием нового вида. Более того, биохимическое единство жизни указывает на происхождение всех известных видов от общего предка (или пула генов) в результате процесса постепенной дивергенции.

Сегодня мы поговорим о том, что такое эволюция в биологии, какое значение она имеет. Конечно, говоря об этой теме, мы не можем оставить без внимания эволюционную теорию Чарльза Дарвина, который предложил ее миру, существующую по сей день.

Итак, что такое эволюция в биологии? Под этим понятием принято понимать постепенные перемены, которые не сильно бросаются в глаза. Но в результате данного процесса появляются и коренные изменения. Эволюция в биологии может привести даже к образованию новых видов живых существ или кардинальному изменению и приспособлению старых. Какое значение имеет эволюция в естествознании? Безусловно, ключевое. Это вы поймете, закончив чтение данной работы.

Эволюция

Сейчас немного поговорим о самом ключевом понятии нашей статьи. Что такое эволюция в биологии? Важно понимать то, что это явление необратимо и напрямую связано с историческим процессом, развитием живой природы. Можно рассматривать эволюцию отдельных частей биосферы или в общем всего живого нашей планеты. Запомните то, что эволюционировать может только живой организм.

Ранее эволюции противопоставляли такое понятие, как «революция». Но в ходе усердного изучения этих двух процессов выяснилось: эволюцию и революцию довольно сложно отличить друг от друга. Почему? Эволюция может длиться миллионы лет или проходить быстро. Так границы между двумя этими процессами сильно размылись.

Некоторые считают, что человек - это результат эволюции, то есть мы произошли от древних обезьян. Эту теорию выдвинул знаменитый ученый Чарльз Дарвин. А теория получила название эволюционной. Верить ей или нет, решает каждый самостоятельно, ведь сейчас существует масса других возможных гипотез. Но раз речь в нашей работе зашла об эволюции, то мы не можем оставить без внимания теорию Дарвина. Предлагаем приступить к ней прямо сейчас.

Теория Дарвина

Чарльз Дарвин впервые смог объяснить человечеству, что такое эволюция в биологии. Упомянем и то, что его теория основывалась на трудах Т. Мальтуса, который представил миру в 1778 году свой «Трактат о народонаселении». Изучив эту работу, Чарльз Дарвин смог сформулировать основные законы, силы, которые движут эволюцией. О чем же работа Т. Мальтуса? Он объяснил, что было бы с нами, если рост населения не сдерживался бы никакими факторами.

Отметим и то, что Дарвин переложил теорию Мальтуса на другие живые системы, его основной вклад в науку - это объяснение того, как происходит эволюция. Он впервые ввел понятие «естественный отбор». Можно упомянуть и то, что еще один ученый (А.Р. Уоллес) смог прийти к такому же выводу. Тогда Дарвин и Уоллес объединились и выступили сообща на заседании в 1858 году с совместным докладом, а уже в 1859 году Ч. Дарвин представил миру труд «Происхождение видов».

Современная теория

Итак, что такое эволюция в биологии, определение по теории Чарльза Дарвина мы уже предоставили. Но существует и современная (ее еще называют синтетической) теория эволюционирования. Предлагаем кратко ее рассмотреть.

Теория неодарвинизма представляет собой обновленную еще в 20 веке теорию Дарвина - Уоллеса. Это получилось в результате обновления и добавления новых данных в областях:

  • генетики;
  • палеонтологии;
  • молекулярной биологии;
  • экологии;
  • этологии.

Почему эту теорию называют синтетической? Именно потому, что она представляет собой синтез основных позиций, представленных Чарльзом Дарвином.

Законы эволюции

  • скорость эволюции неодинакова;
  • образование новых видов происходит у простых форм;
  • отмечены случаи регрессивной эволюции;
  • эволюция происходит благодаря некоторым факторам (мутации, естественный отбор, дрейф генов).

Факторы эволюции

Мы узнали, что такое эволюция в биологии и ее сущность. Давайте теперь поговорим о факторах. Их получили в результате изучения и систематизации всех накопленных знаний, касающихся эволюции. Только так можно увидеть и понять движущие силы, которые позволяют многим видам (менее приспособленным к выживанию) оставаться на нашей планете.

Итак, существует всего три основных фактора:

  • популяционные волны;
  • обособленность группы.

Формы отбора

Говоря об эволюции, мы можем выделить несколько форм естественного отбора:

  • стабилизирующий;
  • движущий;
  • дизруптивный.

Первый вид направлен на поддержание устойчивости конкретного вида. Рассмотрим пример на воробьях. Во время сильной бури было найдено 136 умирающих птиц. 64 из них погибли, так как имели или короткие, или длинные крылья. Особи со средним размером выжили, так как оказались более выносливыми.

Движущий проявляется так: исчезновение конечностей у змей или глаз у пещерных животных, пальцев у копытных и так далее. То есть орган (или его часть), который не нужен животному, попросту исчезает.

Примером дизруптивного отбора могут быть улитки (точнее их окрас). Если почва коричневая, то раковина имеет коричневый или желтый оттенок.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама