THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Масс-спектрометр
Mass-spectrometer

Масс-спектрометр – прибор для определения масс атомов (молекул) по характеру движения их ионов в электрическом и магнитном полях.
Нейтральный атом не подвержен действию электрического и магнитного поля. Однако, если отнять у него или добавить ему один и более электронов, то он превратится в ион, характер движения которого в этих полях будет определяться его массой и зарядом. Строго говоря в масс-спектрометрах определяется не масса, а отношение массы к заряду. Если заряд известен, то однозначно определяется масса иона, а значит масса нейтрального атома и его ядра. Конструктивно масс-спектрометры могут сильно отличаться друг от друга. В них могут использоваться как статичные поля, так и изменяющиеся во времени поля, магнитные и/или электрические.

Рассмотрим один из наиболее простых вариантов.
Масс-спектрометр состоит из следующих основных частей:
а ) ионного источника, где нейтральные атомы превращаются в ионы (например, под действием нагревания или СВЧ-поля) и ускоряются электрическим полем, б ) области постоянных электрических и магнитных полей, и в ) приёмника ионов, определяющего координаты точек, куда попадают ионы, пересекшие эти поля.
Из ионного источника 1 ускоренные ионы через щель 2 попадают в область 3 постоянного и однородного электрического E и магнитного B 1 полей. Направление электрического поля задаётся положением пластин конденсатора и показано стрелками. Магнитное поле направлено перпендикулярно плоскости рисунка. В области 3 электрическое E и магнитное B 1 поля отклоняют ионы в противоположные стороны и величины напряжённости электрического поля Е и индукции магнитного поля B 1 подобраны так, чтобы силы их действия на ионы (соответственно qЕ и qvB 1 , где q – заряд, а v – скорость иона) компенсировали друг друга, т.е. было qЕ = qvB 1 . При скорости иона v = Е/B 1 он движется не отклоняясь в области 3 и проходит через вторую щель 4, попадая в область 5 однородного и постоянного магнитного поля c индукцией B 2 . В этом поле ион движется по окружности 6, радиус R которой определяется из соотношения
Мv 2 /R = qvB 2 , где М – масса иона. Так как v = Е/B 1 , масса иона определяется из соотношения

M = qB 2 R/v = qB 1 B 2 R/E.

Таким образом, при известном заряде иона q его масса M определяется радиусом R круговой орбиты в области 5. Для расчётов удобно использовать соотношение в системе единиц, приведённой в квадратных скобках:

M[Тл] = 10 6 ZB 1 [Тл]B 2 [Тл]R[м]/E[В/м].

Если в качестве детектора ионов 7 использовать фотопластинку, то этот радиус с высокой точностью покажет чёрная точка в том месте проявленной фотопластинки, куда попадал пучок ионов. В современных масс-спектрометрах в качестве детекторов обычно используют электронные умножители или микроканальные пластинки. Масс-спектрометр позволяет определять массы с очень высокой относительной точностью ΔМ/М = 10 -8 - 10 -7 .
Анализ масс-спектрометром смеси атомов различной массы позволяет также определить их относительное содержание в этой смеси. В частности, может быть установлено содержание различных изотопов какого-либо химического элемента.

Что происходит с образцами крови, которую вы сдаете на клинический анализ? Сколько весит ваш гемоглобин? Каким образом ученые вообще взвешивают молекулы - мельчайшие частицы вещества, которые невозможно увидеть или потрогать? Обо всем этом в рамках рубрики «Просто о сложном» T&P рассказала студентка 5-го курса кафедры химической физики ФМХФ, сотрудница лаборатории ионной и молекулярной физики МФТИ Екатерина Жданова.

Очень часто методы исследований интересуют лишь специалистов в конкретных областях и остаются в тени более фундаментальных проблем, например происхождения жизни или принципов работы человеческого сознания. Тем не менее для поиска ответа на «главный вопрос жизни, Вселенной и всего остального» сначала необходимо научиться отвечать на вопросы более простые. Например, как взвесить молекулу? 

Обычные весы тут вряд ли помогут: масса молекулы метана - около 10^(-23) грамм. Молекула гемоглобина, крупного и сложного белка, весит в несколько раз больше - 10^(-20) грамм. Ясно, что необходим какой-то иной подход к проблеме, ведь привычные нам измерительные приборы к ней не применимы. Надо также понимать, что, взвешивая в магазине яблоки или становясь на весы после тренировок, мы на самом деле измеряем силу, действующую на прибор - весы. Затем уже происходит пересчет в привычные нам единицы - граммы и килограммы.


Но как же взвесить молекулу? Здесь природа оставила нам лазейку. Оказывается, заряженные частицы «чувствуют» присутствие электрического и магнитного поля и изменяют траекторию и характер своего движения. На заряженные частицы также действуют силы, величину которых можно пересчитать в отношении массы к заряду.
Этот метод сегодня довольно популярен и называется масс-спектрометрия. Первооткрывателем масс-спектрометрии считается сэр Дж. Дж. Томсон, нобелевский лауреат по физике. Он обратил внимание на то, что заряженные частицы движутся в магнитном поле по параболическим траекториям, пропорциональным отношению их массы к заряду.

Схема работы масс-спектрометра состоит из нескольких этапов. Прежде всего анализируемое вещество должно пройти ионизацию. Затем оно попадает в систему ионного транспорта, которая должна доставить заряженные частицы в масс-анализатор. В масс-анализаторе как раз происходит разделение ионов в зависимости от отношения массы к заряду. В завершение ионы попадают на детектор, данные с которого анализируются с помощью специального программного обеспечения. Полученная таким образом картинка представляет собой спектр, то есть распределение частиц. Одна из осей этого графика - отношения массы к заряду, вторая - интенсивность. Каждый из пиков на таком графике будет характерным для ионов конкретного вещества, поэтому попадание в прибор посторонних веществ, например воздуха, может привести к искажениям результатов. Чтобы избежать этого, применяется вакуумная система.

Сравнительно простая физическая концепция данного метода требует ряда нетривиальных инженерных решений. Как ионизировать молекулы? Каким способом создавать электромагнитное поле? 
Атомы и молекулы электрически нейтральны, поэтому для проведения масс-спектрометрических измерений необходимо их ионизировать, то есть оторвать электроны с внешних атомных орбиталей или добавить протон. Важную роль играет тип образца, с которым предстоит работать. Для исследования неорганических веществ - металлов, сплавов, горных пород - необходимо использовать одни методы, для органических веществ подходят другие. Очень многие органические вещества (такие как ДНК или полимеры) сложно испарить, то есть перевести в газ, без разложения, а это значит, что исследования живой ткани или биологических образцов требуют применения специальных методов. Кроме того, при ионизации молекулы могут распадаться на отдельные фрагменты. Так мы снова встаем перед вопросом: что именно мы собираемся измерить? Массу всей молекулы или массу фрагментов? И то и другое важно. Более того, измерив массу целой молекулы, исследователи часто специально дробят ее на куски. Так, определив массу структурных элементов белка, мы вместе с тем определяем и их количество, что позволяет нам делать выводы о его химическом составе и структуре.

Все это говорит о разнообразии существующих масс-спектрометров, каждый из которых применяется для решения задач в конкретной области. Этот метод практически незаменим в тех случаях, когда ученым необходимо определить химический состав вещества. Фармацевты применяют масс-спектрометрические эксперименты при разработке лекарств, исследованиях фармакокинетики (то есть биохимических процессов, происходящих в организме при принятии лекарства) и метаболизма. Ученые-биологи используют масс-спектрометрию для анализа белков, пептидов и нуклеиновых кислот. Кроме того, если мы хотим проверить качество воды или продуктов питания, то нам снова не обойтись без этого метода.

Отдельная инновационная область применения масс-спектрометрии - медицинская диагностика. К развитию множества заболеваний приводят структурные изменения белков нашего организма: обычно они классифицируются по образованию характерного кусочка, пептида-маркера. Если вовремя определить такую мутацию, то появляется возможность лечить болезнь на ранней стадии. Кроме того, благодаря современным масс-спектрометрам становится возможным проводить исследования такого рода в режиме реального времени - например, в ходе нейрохирургической операции. Это позволяет точно определять границы между здоровой тканью и опухолью, что критически важно для хирургов.

Кажущаяся на первый взгляд сухой и узкопрофильной, масс-спектрометрия при внимательном ознакомлении оказывается удивительно богатой областью, объединяющей широкий класс приложений с необычными инженерными решениями. Наука показывает, что ответы на менее фундаментальные вопросы порой не менее интересны.

Данный метод принципиально отличается от рассмотренных выше спектроскопических методов. Структурная масс-спектрометрия основана на разрушении органической молекулы в результате ионизации тем или иным способом.

Образующиеся ионы сортируются по величинам их отношения масса/заряд (m/z), затем регистрируется число ионов для каждого значения этого отношения в виде спектра. На рис. 5.1. представлена общая схема типичного масс-спектрометра.

Рис. 5.1. Блок-схема типичного масс-спектрометра

Для ведения пробы в масс-спектрометр обычно применяют какой-либо вид хроматографии, хотя во многих приборах есть возможность для прямого ввода образца в ионизационную камеру. Во всех масс-спектрометрах имеются устройства для ионизации пробы и разделения ионов по величине m/z. После разделения нужно детектировать ионы и измерять их количество. Типичный коллектор ионов состоит из коллимирующих щелей, которые направляют в коллектор в данный момент только ионы одного вида, где они детектируются, а сигнал детектирования усиливается электронным умножителем. Современные масс-спектрометры укомплектованы специализированным программным обеспечением: компьютеры контролируют накопление, хранение и визуализацию данных.

В настоящее время стала обычной практика объединения масс-спектрометра с газовым (ГХ-МС) или жидкостным (ЖХ-МС) хроматографом.

Все масс-спектрометры подразделяются на два класса: приборы низкого (единичного) и высокого разрешения (R). Спектрометры низкого разрешения – приборы, на которых можно разделить целые массы до m/z 3000 (R = 3000/(3000-2990) = 3000). На таком приборе соединения C 16 H 26 O 2 и С 15 Н 24 NO 2 неразличимы, поскольку прибор будет фиксировать и в первом и во втором случае массу 250.

Приборы высокого разрешения (R = 20000) смогут различить соединения C 16 H 26 O 2 (250.1933) и С 15 Н 24 NO 2 (250.1807), в этом случае R = 250.1933/(250.1933 – 250.1807) = 19857.

Таким образом, на приборах низкого разрешения можно устанавливать структурную формулу вещества, однако зачастую для этой цели дополнительно необходимо привлекать данные других методов анализа (ИК-, ЯМР-спектроскопия).

Приборы высокого разрешения могут измерять массу иона с точностью, достаточной для определения атомного состава, т.е. определять молекулярную формулу исследуемого вещества.

В последнее десятилетие происходило быстрое развитие и совершенствование масс-спектрометров. Не обсуждая их устройство, отметим, что они подразделяются по типам в зависимости от 1) способа ионизации, 2) метода разделения ионов. В общем, способ ионизации не зависит от метода разделения ионов и наоборот, хотя имеются исключения. Более полная информация по данным вопросам изложена в литературе [Сайнсб. Лебедев].

В данном пособии будут рассмотрены масс-спектры, полученные ионизацией электронным ударом.

5.2. Масс-спектры с ионизацией электронным ударом

Электронный удар (ЭУ, electron impact, EI) – наиболее распространенный метод ионизации в масс-спектрометрии. Преимуществом этого метода является возможность использования поисковых систем и баз данных (метод ЭУ был исторически первым методом ионизации, основные базы экспериментальных данных получены на приборах с ЭУ).

Молекула вещества пробы в газовой фазе подвергается бомбардировке электронов с высокой энергией (обычно 70 эВ) и выбрасывает электрон, образуя катион-радикал, называемый молекулярным ионом :

М + e → М + (молекулярный ион) + 2e

Наименьшая энергия бомбардирующих (ионизующих) электронов, при которой возможно образование из данной молекулы иона, называется энергией (или, менее удачно, «потенциалом») ионизации вещества (U e).

Энергия ионизации является мерой прочности, с какой молекула удерживает наименее сильно связанный с ней электрон.

Как правило, для органических молекул энергия ионизации составляет 9-12 эВ, поэтому бомбардировка электронами с энергией 50 эВ и выше сообщает избыточную внутреннюю энергию возникающему молекулярному иону. Эта энергия частично рассеивается за счет разрыва ковалентных связей.

В результате такого разрыва происходит распад молекулярного иона на частицы меньшей массы (фрагменты). Такой процесс называется фрагментацией .

Фрагментация происходит избирательно, является высоковоспроизводимой и характеристичной для данного соединения . Более того, процессы фрагментации предсказуемы, и именно они обуславливают широкие возможности масс-спектрометрии для структурного анализа. По-сути, структурный анализ методом масс-спектрометрии заключается в идентификации осколочных ионов и ретроспективном восстановлении структуры исходной молекулы, исходя из направлений фрагментации молекулярного иона. Так, например, метанол образует молекулярный ион по схеме:

О
дна точка – оставшийся нечетный электрон; когда заряд локализован на отдельном атоме, знак заряда указывается на этом атоме.

Многие из этих молекулярных ионов распадаются за время 10 -10 – 10 -3 с и дают ряд осколочных ионов (первичная фрагментация):

Если некоторые из молекулярных ионов имеют достаточно большое время жизни, то они достигают детектора и регистрируются в виде пика молекулярного иона. Поскольку заряд исходного иона равен единице, отношение m / z для этого пика дает молекулярную массу исследуемого вещества.

Таким образом, масс-спектр – это представление относительных концентраций положительно заряженных осколков (включая молекулярный ион) в зависимости от их масс .

В специальной литературе приводятся таблицы наиболее часто встречающихся фрагментных ионов, где указана структурная формула иона и его значение m/z [Преч, Гордон, Сильверстейн].

Высота наиболее интенсивного в спектре пика принимается за 100%, а интенсивности других пиков, включая пик молекулярного иона, выражаются в процентах от максимального пика.

В определенных случаях самым интенсивным может быть и пик молекулярного иона. В общем случае: интенсивность пика зависит от устойчивости образующегося иона .

В масс-спектрах часто присутствует серия пиков фрагментных ионов, различающихся на гомологическую разность (СН 2), т.е. 14 а.е.м. Гомологические серии ионов характерны для каждого класса органических веществ, а потому они несут важную информацию о структуре исследуемого вещества.

Масс-спектрометрия (масс-спектроскопия, масс-спектрография, масс-спектральный анализ, масс-спектрометрический анализ) - метод исследования вещества, основанный на определении отношения массы к заряду ионов, образующихся при ионизации представляющих интерес компонентов пробы. Один из мощнейших способов качественной идентификации веществ, допускающий также и количественное определение. Можно сказать, что масс-спектрометрия - это «взвешивание» молекул, находящихся в пробе.

История масс-спектрометрии ведётся с основополагающих опытов Дж. Дж. Томсона в начале XX века. Окончание «-метрия» в названии метода появилось после повсеместного перехода от детектирования заряженных частиц при помощи фотопластинок к электрическим измерениям ионных токов.

Особенно широкое применение масс-спектрометрия находит в анализе органических веществ, поскольку обеспечивает уверенную идентификацию как относительно простых, так и сложных молекул. Единственное общее требование - чтобы молекула поддавалась ионизации. Однако к настоящему времени придумано столько способов ионизации компонентов пробы, что масс-спектрометрию можно считать практически всеохватным методом.

Почти все масс-спектрометры - это вакуумные приборы, поскольку ионы очень нестабильны в присутствии посторонних молекул. Однако существуют некоторые приборы, которые можно условно отнести к масс-спектрометрам, но в которых используется не вакуум, а поток особого чистого газа.

Масс-спектр - это зависимость интенсивности ионного тока (количества вещества) от отношения массы к заряду (природы вещества). Поскольку масса любой молекулы складывается из масс составляющих её атомов, масс-спектр всегда дискретен, хотя при низком разрешении масс-спектрометра пики разных масс могут перекрываться или даже сливаться. Природа анализируемого вещества, особенности метода ионизации и вторичные процессы в масс-спектрометре могут влиять на масс-спектр (см. метастабильные ионы, градиент ускоряющего напряжения по местам образования ионов, неупругое рассеивание). Так, ионы с одинаковыми отношениями массы к заряду могут оказаться в разных частях спектра и даже сделать часть его непрерывным.

Большинство небольших молекул при ионизации приобретает только один положительный или отрицательный заряд. Чем больше молекула, тем больше вероятность того, что во время ионизации она превратится в многозарядный ион. Поэтому особенно сильно данный эффект проявляется в отношении крайне больших молекул, например, белков, нуклеиновых кислот и полимеров. При некоторых видах ионизации (например, электронный удар) молекула может распадаться на несколько характерных частей, что даёт дополнительные возможности идентификации и исследования структуры неизвестных веществ.

Точное определение массы анализируемой молекулы позволяет определить её элементный состав (см.: элементный анализ). Масс-спектрометрия также позволяет получить важную информацию об изотопном составе анализируемых молекул.

История масс-спектрометрии

  • 1912 год - Дж. Дж. Томсон создает первый масс-спектрограф и получает масс-спектры молекул кислорода, азота, угарного газа, углекислого газа и фосгена.
  • 1913 год - С помощью своего масс-спектрографа Дж. Дж. Томсон открывает изотопы неона: неон-20 и неон-22.
  • 1918 год - Артур Демпстер строит первый масс-спектрограф.
  • 1919 год - Фрэнсис Астон, независимо от Демпстера, строит свой первый масс-спектрограф и начинает исследования изотопов. Этот прибор имел разрешающую способность около 130.
  • 1923 год - Астон измеряет с помощью масс-спектрометра дефект массы.
  • 1932 год - Кеннет Бейнбридж строит масс-спектрометр с разрешающей способностью 600 и чувствительностью 1 часть на 10 тыс.
  • 1936 год - Артур Демпстер, Кеннет Бэйнбридж (англ. Kenneth Tompkins Bainbridge) и Йозеф Маттаух (англ. Josef Heinrich Elizabeth Mattauch) конструируют масс-спектрограф с двойной фокусировкой. Демпстер разрабатывает искровой источник ионизации.
  • 1940 год - Альфред Нир с помощью препаративной масс-спектрометрии выделяет уран-235.
  • 1940 год - Альфред Нир создает первый надёжный источник электронного удара, применив ионизационную камеру.
  • 1942 год - Лоуренс запускает «калутрон» - промышленную установку по разделению изотопов урана, основанную на магнитно-секторном масс-спектрометре.
  • 1946 год - Уильям Стивенс предлагает концепцию время-пролётного масс-спектрометра.
  • 1948 год - Камероном и Эггерсом создан первый масс-спектрометр с время-пролётным масс-анализатором.
  • 1952 год - Тальрозе и Любимова впервые наблюдают сигнал метония CH5+ в ионном источнике электронного удара при повышенном давлении метана в ионизационной камере (в 1966 Мансон и Филд применят это открытие для аналитических целей и создадут ионный источник с химической ионизацией).
  • 1953 год - Пауль патентует квадрупольный масс-анализатор и ионную ловушку.
  • 1956 год - МакЛафферти и Голке создают первый газовый хромато-масс-спектрометр.
  • 1966 год - Мансон и Филд создают ионный источник с химической ионизацией.
  • 1972 год - Каратаев и Мамырин изобретают время-пролётный масс-анализатор с фокусировкой, значительно улучшающий разрешение анализатора.
  • 1974 год - Первый жидкостный хромато-масс-спектрометр создан Арпино, Болдуином и МакЛафферти
  • 1981 год - Барбер, Бордоли, Седжвик и Тайлор создают ионизатор с бомбардировкой быстрыми атомами (FAB).
  • 1982 год - Первый масс-спектр целого белка (инсулин) с помощью бомбардировки быстрыми атомами (FAB).
  • 1983 год - Бланки и Бестал изобретают термоспрей.
  • 1984 год - Л. Н. Галль, а затем Фенн публикуют работы по методу электроспрей.
  • 1987 год - Карас, Бахман, Бар и Хилленкамп изобретают ионизацию лазерной десорбцией при содействии матрицы (MALDI).
  • 1999 год - Александр Макаров (англ.)русск. изобретает электростатическую ионную ловушку «Орбитрэп».

Принцип работы и устройство масс-спектрометра

Источники ионов

Первое, что надо сделать для того, чтобы получить масс-спектр, - превратить нейтральные молекулы и атомы, составляющие любое органическое или неорганическое вещество, в заряженные частицы - ионы. Этот процесс называется ионизацией и по-разному осуществляется для органических и неорганических веществ. Вторым необходимым условием является перевод ионов в газовую фазу в вакуумной части масс спектрометра. Глубокий вакуум обеспечивает беспрепятственное движение ионов внутри масс-спектрометра, а при его отсутствии ионы рассеются и рекомбинируют (превратятся обратно в незаряженные частицы).

Условно способы ионизации органических веществ можно классифицировать по фазам, в которых находятся вещества перед ионизацией.

Газовая фаза электронная ионизация (EI) химическая ионизация (CI) электронный захват (EC) ионизация в электрическом поле (FI) Жидкая фаза термоспрей ионизация при атмосферном давлении (AP)

  • электроспрей (APESI)
  • химическая ионизация при атмосферном давлении (APCI)
  • фотоионизация при атмосферном давлении (APPI)
Твёрдая фаза прямая лазерная десорбция - масс-спектрометрия (LDMS) матрично-активированная лазерная десорбция/ионизация (MALDI) масс-спектрометрия вторичных ионов (SIMS) бомбардировка быстрыми атомами (FAB) десорбция в электрическом поле (FD) плазменная десорбция (PD)

В неорганической химии для анализа элементного состава применяются жёсткие методы ионизации, так как энергии связи атомов в твёрдом теле гораздо больше и значительно более жёсткие методы необходимо использовать для того, чтобы разорвать эти связи и получить ионы.

  • ионизация в индуктивно-связанной плазме (ICP)
  • термоионизация или поверхностная ионизация
  • ионизация в тлеющем разряде и искровая ионизация (см. искровой разряд)
  • ионизация в процессе лазерной абляции

Исторически первые методы ионизации были разработаны для газовой фазы. К сожалению, очень многие органические вещества невозможно испарить, то есть перевести в газовую фазу, без разложения. А это значит, что их нельзя ионизовать электронным ударом. Но среди таких веществ почти всё, что составляет живую ткань (белки, ДНК и т. д.), физиологически активные вещества, полимеры, то есть всё то, что сегодня представляет особый интерес. Масс-спектрометрия не стояла на месте и последние годы были разработаны специальные методы ионизации таких органических соединений. Сегодня используются, в основном, два из них - ионизация при атмосферном давлении и её подвиды - электроспрей (ESI), химическая ионизация при атмосферном давлении (APCI) и фотоионизация при атмосферном давлении (APPI), а также ионизация лазерной десорбцией при содействии матрицы (MALDI).

Масс-анализаторы

Полученные при ионизации ионы с помощью электрического поля переносятся в масс-анализатор. Там начинается второй этап масс- спектрометрического анализа - сортировка ионов по массам (точнее по отношению массы к заряду, или m/z). Существуют следующие типы масс-анализаторов:

Непрерывные масс-анализаторы

  • Магнитный и электростатический секторный масс-анализатор (англ. Sector instrument)
  • Квадрупольный масс-анализатор (англ. Quadrupole mass analyzer)
импульсные масс-анализаторы
  • Времяпролётный масс-анализатор (англ. Time-of-flight mass spectrometry)
  • Ионная ловушка (англ. Ion trap)
  • Квадрупольная линейная ловушка (англ. Quadrupole ion trap)
  • Масс-анализатор ионно-циклотронного резонанса с Фурье-преобразованием (англ. Fourier transform ion cyclotron resonance)
  • Орбитрэп (англ. Orbitrap)

Разница между непрерывными и импульсными масс-анализаторами заключается в том, что в первых ионы поступают непрерывным потоком, а во вторых - порциями, через определённые интервалы времени.

Масс-спектрометр может иметь два масс-анализатора. Такой масс-спектрометр называют тандемным. Тандемные масс спектрометры применяются, как правило, вместе с «мягкими» методами ионизации, при которых не происходит фрагментации ионов анализируемых молекул (молекулярных ионов). Таким образом первый масс-анализатор анализирует молекулярные ионы. Покидая первый масс-анализатор, молекулярные ионы фрагментируются под действием соударений с молекулами инертного газа или излучения лазера, после чего их фрагменты анализируются во втором масс-анализаторе. Наиболее распространёнными конфигурациями тандемных масс спектрометров являются квадруполь-квадрупольная и квадруполь-времяпролётная.

Детекторы

Последним элементом описываемого нами упрощённого масс-спектрометра, является детектор заряженных частиц. Первые масс-спектрометры использовали в качестве детектора фотопластинку. Сейчас используются динодные вторично-электронные умножители, в которых ион, попадая на первый динод, выбивает из него пучок электронов, которые в свою очередь, попадая на следующий динод, выбивают из него ещё большее количество электронов и т. д. Другой вариант - фотоумножители, регистрирующие свечение, возникающее при бомбардировке ионами люминофора. Кроме того, используются микроканальные умножители, системы типа диодных матриц и коллекторы, собирающие все ионы, попавшие в данную точку пространства (коллекторы Фарадея).

Хромато-масс-спектрометрия

Масс-спектрометры используются для анализа органических и неорганических соединений.

Органические вещества в большинстве случаев представляют собой многокомпонентные смеси индивидуальных компонентов. Например, показано, что запах жареной курицы составляют 400 компонентов (то есть, 400 индивидуальных органических соединений). Задача аналитики состоит в том, чтобы определить сколько компонентов составляют органическое вещество, узнать какие это компоненты (идентифицировать их) и узнать сколько каждого соединения содержится в смеси. Для этого идеальным является сочетание хроматографии с масс-спектрометрией. Газовая хроматография как нельзя лучше подходит для сочетания с ионным источником масс-спектрометра с ионизацией электронным ударом или химической ионизацией, поскольку в колонке хроматографа соединения уже находятся в газовой фазе. Приборы, в которых масс-спектрометрический детектор скомбинирован с газовым хроматографом, называются хромато-масс-спектрометрами («Хромасс»).

Многие органические соединения невозможно разделить на компоненты с помощью газовой хроматографии, но можно с помощью жидкостной хроматографии. Для сочетания жидкостной хроматографии с масс-спектрометрией сегодня используют источники ионизации в электроспрее (ESI) и химической ионизации при атмосферном давлении (APCI), а комбинацию жидкостных хроматографов с масс-спектрометрами называют ЖХ/МС (англ. LC/MS). Самые мощные системы для органического анализа, востребованные современной протеомикой, строятся на основе сверхпроводящего магнита и работают по принципу ионно-циклотронного резонанса. Они также носят название FT/MS, поскольку в них используется Фурье преобразование сигнала.

Характеристики масс-спектрометров и масс-спектрометрических детекторов

Важнейшими техническими характеристиками масс-спектрометров являются чувствительность, динамический диапазон, разрешение, скорость сканирования.

Важнейшая характеристика при анализе органических соединений - это чувствительность. Для того, чтобы достигнуть как можно большей чувствительности при улучшении отношения сигнала к шуму прибегают к детектированию по отдельным выбранным ионам. Выигрыш в чувствительности и селективности при этом колоссальный, но при использовании приборов низкого разрешения приходится приносить в жертву другой важный параметр - достоверность. Ведь если Вы записывали только один пик из всего характеристического масс-спектра, Вам понадобится ещё много поработать, чтобы доказать, что этот пик соответствует именно тому компоненту, который Вас интересует. Как же разрешить эту проблему? Использовать высокое разрешение на приборах с двойной фокусировкой, где можно добиться высокого уровня достоверности не жертвуя чувствительностью. Или использовать тандемную масс-спектрометрию, когда каждый пик, соответствующий материнскому иону можно подтвердить масс-спектром дочерних ионов. Итак, абсолютным рекордсменом по чувствительности является органический хромато-масс-спектрометр высокого разрешения с двойной фокусировкой.

По характеристике сочетания чувствительности с достоверностью определения компонентов следом за приборами высокого разрешения идут ионные ловушки. Классические квадрупольные приборы нового поколения имеют улучшенные характеристики благодаря ряду инноваций, применённых в них, например, использованию искривлённого квадрупольного префильтра, предотвращающего попадание нейтральных частиц на детектор и, следовательно, снижению шума.

Применения масс-спектрометрии

Разработка новых лекарственных средств для спасения человека от ранее неизлечимых болезней и контроль производства лекарств, генная инженерия и биохимия, протеомика. Без масс-спектрометрии немыслим контроль над незаконным распространением наркотических и психотропных средств, криминалистический и клинический анализ токсичных препаратов, анализ взрывчатых веществ.

Выяснение источника происхождения очень важно для решения целого ряда вопросов: например, определение происхождения взрывчатых веществ помогает найти террористов, наркотиков - бороться с их распространением и перекрывать пути их трафика. Экономическая безопасность страны более надёжна, если таможенные службы могут не только подтверждать анализами в сомнительных случаях страну происхождения товара, но и его соответствие заявленному виду и качеству. А анализ нефти и нефтепродуктов нужен не только для оптимизации процессов переработки нефти или геологам для поиска новых нефтяных полей, но и для того, чтобы определить виновных в разливах нефтяных пятен в океане или на земле.

В эпоху «химизации сельского хозяйства» весьма важным стал вопрос о присутствии следовых количеств применяемых химических средств (например, пестицидов) в пищевых продуктах. В мизерных количествах эти вещества могут нанести непоправимый вред здоровью человека.

Целый ряд техногенных (то есть не существующих в природе, а появившихся в результате индустриальной деятельности человека) веществ являются супертоксикантами (имеющими отравляющее, канцерогенное или вредное для здоровья человека действие в предельно низких концентрациях). Примером является хорошо известный диоксин.

Существование ядерной энергетики немыслимо без масс-спектрометрии. С её помощью определяется степень обогащения расщепляющихся материалов и их чистота.

Конечно и медицина не обходится без масс-спектрометрии. Изотопная масс-спектрометрия углеродных атомов применяется для прямой медицинской диагностики инфицированности человека Helicobacter pylori и является самым надёжным из всех методов диагностики. Также, масс-спектрометрия применяется для определения наличия допинга в крови спортсменов.

Трудно представить область человеческой деятельности, где не нашлось бы места масс-спектрометрии. Ограничимся просто перечислением: аналитическая химия, биохимия, клиническая химия, общая химия и органическая химия, фармацевтика, косметика, парфюмерия, пищевая промышленность, химический синтез, нефтехимия и нефтепераработка, контроль окружающей среды, производство полимеров и пластиков, медицина и токсикология, криминалистика, допинговый контроль, контроль наркотических средств, контроль алкогольных напитков, геохимия, геология, гидрология, петрография, минералогия, геохронология, археология, ядерная промышленность и энергетика, полупроводниковая промышленность, металлургия.

МАСС-СПЕКТРОМЕТРИЯ ( , масс-спектральный анализ), метод анализа в-ва путем определения массы (чаще, отношения массы к заряду m/z) и относит. кол-ва , получаемых при ионизации исследуемого в-ва или уже присутствующих в изучаемой смеси. Совокупность значений m/z и относит. величин токов этих , представленная в виде графика или таблицы, наз. масс-спектром в-ва (рис. 1).

Начало развитию масс-спектрометрии положено опытами Дж. Томсона (1910), исследовавшего пучки заряженных частиц, разделение к-рых по массам производилось с помощью электрич. и магн. полей, а спектр регистрировался на . Первый построен А. Демпстером в 1918, а первый масс-спектрограф создал Ф. Астон в 1919; он же исследовал изотопич. состав большого числа элементов. Первый серийный создан А. Ниром в 1940; его работы положили начало изотопной масс-спектрометрии. Прямое соединение с газо-жидкостным (1959) дало возможность анализировать сложные смеси летучих соед., а соединение с жидкостным с помощью термораспылит. устройства (1983) -смеси труднолетучих соединений.
Macс-спектральные приборы. Для разделения исследуемого в-ва по величинам m/z, измерения этих величин и токов разделенных используют масс-спектральные приборы. Приборы, в к-рых регистрация осуществляется электрич. методами, наз. , а приборы с регистрацией на - масс-спектрографами. Масс-спектральные приборы состоят из системы ввода (система напуска), ионного источника, разделительного устройства (масс-анализатора), детектора (приемника ), обеспечивающих достаточно глубокий во всей вакуумной системе прибора, и системы управления и обработки данных (рис. 2). Иногда приборы соединяют с ЭВМ.


Масс-спектральные приборы характеризуются чувствительностью, к-рая определяется как отношение числа зарегистрированных к числу введенной . За абс. порог чувствительности принимают миним. кол-во исследуемого в-ва (выраженное в г, ), за относительный - миним. массовую или объемную долю в-ва (выраженную в %), к-рые обеспечивают регистрацию выходного сигнала при отношении сигнал-шум 1:1.
Ионный источник предназначен для образования газообразных исследуемого в-ва и формирования ионного пучка, к-рый направляется далее в масс-анализатор. наиб. универсальный метод ионизации в-ва - электронный удар. Впервые осуществлен П. Ленардом (1902). Совр. источники такого типа построены по принципу источника А. Нира (рис. 3).

Рис. 3. Схема ионного источника типа источника А. Нира: 1 - постоянный магнит; 2 - ; 3 - выталкивающий ; 4 - поток ; 5 - ловушка ; 6 - ионный луч; 7 - ввод в-ва.

Под действием поля, силовые линии к-рых направлены перпендикулярно направлению движения ионного пучка, двигаются по круговой траектории с радиусом r = (2Vm n /zH 2) 1/2 , где V - напряжение, ускоряющее , m n - масса , z - заряд , H - напряженность магн. поля. с одинаковой кинетич.
энергией, но с разными массами или зарядами проходят через анализатор по разл. траекториям. Обычно развертка масс-спектра (регистрация с определенными значениями m/z) осуществляется изменением Н при постоянном V. Разброс , вылетающих из ионного источника, по кинетич. энергиям, а также несовершенство фокусировки по направлениям приводят к уширению ионного пучка, что сказывается на разрешающей способности. Для статич. масс-анализатора R = r/(S 1 + S 2 + d ), где S 1 и S 2 - соотв. ширина входной и выходной щелей, d - уширение пучка в плоскости выходной щели. Уменьшение размера щелей для увеличения разрешающей способности прибора трудно осуществимо технически и, кроме того, приводит к очень малым ионным токам, поэтому обычно конструируют приборы с большим радиусом траектории (r = 200 - 300 мм). Разрешающая способность м. б. повышена также при использовании масс-анализаторов с двойной фокусировкой. В таких приборах ионный пучок пропускают сначала через отклоняющее электрич. поле спец. формы, в к-ром осуществляется фокусирование пучка по энергиям, а затем через магн. поле, в к-ром фокусируются по направлениям (рис. 5).

Рис. 5. Схема масс-анализатора с двойной фокусировкой: S 1 и S 2 - щели источника и детектора ; 1 - конденсатор; 2 - магнит.

Существует более 10 типов динамич. масс-анализаторов: квадруполъный, время-пролетный, циклотронно-резонансный, магнитно-резонансный, радиочастотный, фарвитрон, омегатрон и др. Ниже рассмотрены наиб. широко применяемые масс-анализаторы. Квадрупольный масс-анализатор представляет собой квадруполъный конденсатор (рис. 6), к параллельных стержней к-рого приложены постоянное напряжение V и переменное высокочастотное V 0 cos w t (w - частота, t - время); их суммы для каждой равны по величине и противоположны по знаку.


Рис. 6. Схема квадрупольного масс-анализатора: 1 - высокочастотный генератор; 2 - генератор постоянного напряжения; 3 - генератор развертки; 4 и 5 -источник и детектор .

Вылетевшие из ионного источника, движутся в камере анализатора вдоль оси z, параллельной продольным осям стержней, по сложным объемным спиралевидным траекториям, совершая поперечные колебания вдоль осей x и у. При фиксированных значениях частоты и амплитуды переменного напряжения с определенными значениями m/z проходят через квадруполъный конденсатор, у с др. значениями m/z амплитуда поперечных колебаний достигает такой величины, что они ударяются о стержни и разряжаются на них. Развертка масс-спектра производится путем изменения постоянного и переменного напряжении или частоты. Для совр. квадрупольных R = 8000. Первый квадрупольный прибор построен В. Паули и X. Штайнведелем (ФРГ, 1953). Время-пролетный масс-анализатор представляет собой эквипотенциальное пространство, в котором дрейфуют , разделяясь по скоростям движения (рис. 7). , образующиеся в ионном источнике, очень коротким электрич. импульсом "впрыскиваются" в виде "ионного пакета" через сетку в анализатор. В процессе движения исходный ионный пакет расслаивается на пакеты, состоящие из с одинаковыми значениями m/z. Скорость дрейфа отслоившихся ионных пакетов и, следовательно, время их пролета через анализатор длиной L вычисляется по ф-ле: (V - напряжение). Совокупность таких пакетов, поступающих в детектор, образует масс-спектр. Для совр. приборов R = 5000 - 10000. Первый прибор создан А. Камероном и Д. Эгтерсом (США, 1948), а в СССР - Н. И. Ионовым (1956).

Рис. 7. Схемавремя-пролетного масс-анализатора: 1 - сетка; 2 - детектор.

В 1973 Б. А. Мамыриным сконструирован прибор с электростатич. отражающим зеркалом, наз. масс-рефлектроном. Циклотронно-резонансный масс-анализатор -ячейка в виде прямоугольного параллелепипеда или куба, помещенная в однородное магн. поле. , попадая в ячейку, движутся в ней по спиральной траектории (циклотронное движение) с частотой w ц = 1 / 2 p z . H/m, где H - напряженность магн. поля, т. е. с одинаковыми значениями m/z имеют определенную циклотронную частоту. Действие прибора основано на резонансном поглощении энергии при совпадении частоты поля и циклотронной частоты . На применении циклотронно-резонансного масс-анализатора основан метод , к-рый используют для определения массы , в частности мол. , образующихся при ионно-молекулярных р-циях в газовой фазе; анализа структуры высокомол. ; определения кислотно-основных св-в в-в. Для легких R = 10 8 . Первый ионциклотронного резонанса построен Г. Соммером, Г. Томасом и Дж. Хиплом (США, 1950).
Детекторы (приемники) помещают на выходе прибора. Для детектирования используют электрометрич. усилители, позволяющие измерять ионные токи до 10 - 14 А, электронные умножители и сцинтилляц. детекторы с фотоумножителем, к-рые обеспечивают счет отдельных (ток 10 - 19 А) и имеют малую постоянную времени, а также , преимущество к-рых в возможности регистрации всех масс-спектра и накопление сигнала. Для введения в-ва в ионный источник существует спец. система, наз. системой напуска. Она обеспечивает ввод строго дозированных кол-в в-ва, его миним. термич. разложение, кратчайшую доставку к области ионизации и автоматич. смену образцов без нарушения . Система ввода и легколетучих в-в представляет собой холодные или обогреваемые стеклянные резервуары с вязкостными или мол. натекателями, через к-рое газообразное в-во поступает в область ионизации. При соединении с между ионным источником и помещается мол. сепаратор (струйный, пористый или мембранный), в к-ром удаляется газ-носитель и обогащается анализируемым в-вом. Система ввода труднолетучих в-в представляет собой чаще всего вакуумный шлюз, из к-рого ампула с в-вом вводится непосредственно в ионизац. камеру. Ампула укреплена на штоке, снабженном нагревателем, с помощью к-рого создается необходимая т-ра для в-ва. В нек-рых случаях ампула нагревается за счет тепла ионизац. камеры. Для уменьшения разложения в-ва повышают скорость нагревания , к-рая должна превышать скорость термич. разложения. Так действуют устройства, соединяющие жидкостной с ионным источником. Наиб. распространено устройство, основанное на термораспылении р-ра исследуемого в-ва, при к-ром происходит его ионизация. Др. тип - ленточный транспортер, на ленте к-рого в-во доставляется в ионный источник через систему шлюзов. При движении ленты происходит удаление р-рителя, а в ионном источнике при быстром нагревании ленты в-во испаряется и ионизируется. В нек-рых случаях возможны и ионизация в-ва в результате его бомбардировки ускоренными частицами на пов-сти ленты. Для труднолетучих неорг. соед. применяют спец. , наз. ячейкой Кнудсена. Это - высокотемпературная с тиглем, имеющим отверстие малого диаметра 0,1-0,3 мм, через к-рое протекает в условиях близких к равновесным. работает в условиях глубокого (10 - 5 - 10 - 6 Па и выше), к-рый позволяет свести к минимуму потерю разрешающей способности из-за столкновения ионного пучка с нейтральными . Ионный источник и масс-анализатор имеют разные системы откачки и соединяются между собой каналом такого размера, к-рый достаточен для прохождения ионного луча. Такая конструкция предохраняет падение в анализаторе при повышении в источнике . В источнике необходима также высокая скорость откачки для уменьшения эффекта памяти (удаление в-в, адсорбированных на внутр. пов-сти прибора). Обычно в приборах создают диффузионные . Применяют также турбомолекулярные , обеспечивающие получение сверхвысокого (10 - 7 - 10 - 8 Па) и откачку со скоростью неск. литров в секунду; эти не требуют применения охлаждаемых ловушек. Сбор данных и управление требует автоматизации всех процессов с помощью ЭВМ, к-рая позволяет проводить разл. типы исследований по заранее заданной программе с условий анализа в процессе работы прибора.
Применение масс-спектрометрии. Масс-спектрометрию широко применяют в разл. областях науки и техники: в и , физике, геологии, биологии, медицине, в пром-сти , в лакокрасочной и хим. пром-сти, в произ-ве и сверхчистых материалов, в ядерной технике, в с. х-ве и ветеринарии, в пищ. пром-сти, при анализе продуктов загрязнения и мн. др. Большие успехи достигнуты при анализе биологически важных в-в; показана возможность с мол. м. до 15000, с мол. м. до 45000 и т.д. Масс-спектрометрия нашла применение как экспрессный метод в медицине; принципы масс-спектрометрии лежат в основе устройства наиб. чувствит. течеискателей. Отечеств. , выпускаемые для разл. целей, имеют индексы: для исследования изотопного состава - МИ, для исследования хим. состава - MX, для - МС. Macс-спектрометрия в позволяет измерить точную мол. массу и рассчитать элементный состав исследуемого в-ва, установить хим. и пространств. строение, определить изотопный состав, провести качеств. и количеств. анализ сложных смесей орг. соединений. Одна из важнейших задач - нахождение зависимости между характером масс-спектра и строением исследуемой орг. . При ионизации орг. образуется мол. , в к-ром далее происходят процессы гетеро- и гомолитич. разрыва связей или разрыва связей с перегруппировкой и образование осколочных , к-рые в свою очередь могут подвергаться дальнейшему распаду. Последоват. распады , устанавливаемые из масс-спектра, наз. направлениями или путями распада. Направления распада - важная характеристика каждого класса соединений. Совокупность всех направлений распада составляет характерную для каждого орг. соед. схему фрагментации. Если масс-спектр прост, схема фрагментации сводится к одному пути распада, напр. при распаде мол. СН 3 ОН + последовательно образуются СН 2 =ОН + и Н-С=О + . В случае сложных масс-спектров схема фрагментации отвечает многим, часто перекрывающимся направлениям распада, напр. схема фрагментации :


Мол. распадается в результате разрыва связей СН-СО, СО-NH, NH-СН и СН-R с образованием осколочных соотв. А n и Х n , В n и Y n , С n и Z n , S n и R n (n - номер аминокислотного остатка в пептидной цепи), к-рые далее распадаются таким же образом. Общее кол-во пиков в таком спектре может достигать неск. сотен. Кол-во фрагментов определяется строением исследуемой , запасом внутр. энергии мол. и осколочных и промежутком времени между образованием и его детектированием. Поэтому при интерпретации масс-спектров необходимо учитывать как условия измерений (энергию ионизирующих , ускоряющее напряжение, в ионном источнике, т-ру ионизац. камеры), так и конструктивные особенности прибора. При макс. стандартизации условий измерений удается получать достаточно воспроизводимые масс-спектры. Сравнение масс-спектра исследуемой системы со спектром, имеющимся в каталоге, -наиб. быстрый и простой способ , в-в при определении загрязнения , контроле продуктов питания человека и животных, изучении процессов лек. препаратов, в криминалистике и т.д. Однако лишь на масс-спектра не может быть однозначной, напр. не все изомерные в-ва образуют различающиеся масс-спектры. В условиях масс-спектрометрии часть возбужденных распадается после выхода из ионного источника. Такие наз. метастабильными. В масс-спектрах они характеризуются уширенными пиками при нецелочисленных значениях т/z. Один из методов изучения таких - масс и кинетич. энергий . Изучение распада метастабильных проводят на приборах, у к-рых магн. анализатор предшествует электрическому. Магн. анализатор настраивают таким образом, чтобы он пропустил метастабильный



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама