THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

1. Основания взаимодействуют с кислотами, образуя соль и воду:

Cu(OH) 2 + 2HCl = CuCl 2 + 2H 2 O

2. С кислотными оксидами, образуя соль и воду:

Ca(OH) 2 + CO 2 = CaCO 3 + H 2 O

3. Щелочи реагируют с амфотерными оксидами и гидроксидами, образуя соль и воду:

2NaOH + Cr 2 O 3 = 2NaCrO 2 + H 2 O

KOH + Cr(OH) 3 = KCrO 2 + 2H 2 O

4. Щелочи взаимодействуют с растворимыми солями, образуя, либо слабое основание, либо осадок, либо газ:

2NaOH + NiCl 2 = Ni(OH) 2 ¯ + 2NaCl

основание

2KOH + (NH 4) 2 SO 4 = 2NH 3 ­ + 2H 2 O + K 2 SO 4

Ba(OH) 2 + Na 2 CO 3 = BaCO 3 ¯ + 2NaOH

5. Щелочи реагируют с некоторыми металлами, которым соответствуют амфотерные оксиды:

2NaOH + 2Al + 6H 2 O = 2Na + 3H 2 ­

6. Действие щелочи на индикатор:

OH - + фенолфталеин ® малиновый цвет

OH - + лакмус ® синий цвет

7. Разложение некоторых оснований при нагревании:

Сu(OH) 2 ® CuO + H 2 O

Амфотерные гидроксиды – химические соединения, проявляющие свойства и оснований, и кислот. Амфотерные гидроксиды соответствуют амфотерным оксидам (см. п.3.1).

Амфотерные гидроксиды записывают, как правило, в форме основания, но их можно представить и в виде кислоты:

Zn(OH) 2 Û H 2 ZnO 2

основание к-та

Химические свойства амфотерных гидроксидов

1. Амфотерные гидроксиды взаимодействуют с кислотами и кислотными оксидами:

Be(OH) 2 + 2HCl = BeCl 2 + 2H 2 O

Be(OH) 2 + SO 3 = BeSO 4 + H 2 O

2. Взаимодействуют со щелочами и основными оксидами щелочных и щелочноземельных металлов:

Al(OH) 3 + NaOH = NaAlO 2 + 2H 2 O;

H 3 AlO 3 кислота метаалюминат натрия

(H 3 AlO 3 ® HAlO 2 + H 2 O)

2Al(OH) 3 + Na 2 O = 2NaAlO 2 + 3H 2 O

Все амфотерные гидроксиды являются слабыми электролитами

Соли

Соли – это сложные вещества, состоящие из ионов металла и кислотного остатка. Соли представляют собой продукты полного или частичного замещения ионов водорода ионами металла (или аммония) у кислот. Типы солей: средние (нормальные), кислые и основные.

Средние соли – это продукты полного замещения катионов водорода у кислот ионами металла (или аммония) :Na 2 CO 3 , NiSO 4 , NH 4 Cl и т.д.

Химические свойства средних солей

1. Соли взаимодействуют с кислотами, щелочами и другими солями, образуя, либо слабый электролит, либо осадок; либо газ:

Ba(NO 3) 2 + H 2 SO 4 = BaSO 4 ¯ + 2HNO 3

Na 2 SO 4 + Ba(OH) 2 = BaSO 4 ¯ + 2NaOH

CaCl 2 + 2AgNO 3 = 2AgCl¯ + Ca(NO 3) 2

2CH 3 COONa + H 2 SO 4 = Na 2 SO 4 + 2CH 3 COOH

NiSO 4 + 2KOH = Ni(OH) 2 ¯ + K 2 SO 4

основание

NH 4 NO 3 + NaOH = NH 3 ­ + H 2 O + NaNO 3

2. Соли взаимодействуют с более активными металлами. Более активный металл вытесняет менее активный из раствора соли (прил. 3).

Zn + CuSO 4 = ZnSO 4 + Cu

Кислые соли – это продукты неполного замещения катионов водорода у кислот ионами металла (или аммония): NaHCO 3 , NaH 2 PO 4 , Na 2 HPO 4 и т.д. Кислые соли могут быть образованы только многоосновными кислотами. Практически все кислые соли хорошо растворимы в воде.

Получение кислых солей и перевод их в средние

1. Кислые соли получают при взаимодействии избытка кислоты или кислотного оксида с основанием:

H 2 CO 3 + NaOH = NaHCO 3 + H 2 O

CO 2 + NaOH = NaHCO 3

2. При взаимодействии избытка кислоты с основным оксидом:

2H 2 CO 3 + CaO = Ca(HCO 3) 2 + H 2 O

3. Кислые соли получают из средних солей, добавляя кислоту:

· одноименную

Na 2 SO 3 + H 2 SO 3 = 2NaHSO 3 ;

Na 2 SO 3 + HCl = NaHSO 3 + NaCl

4. Кислые соли переводят в средние, используя щелочь:

NaHCO 3 + NaOH = Na 2 CO 3 + H 2 O

Основные соли – это продукты неполного замещения гидроксогрупп (ОН - ) основания кислотным остатком: MgOHCl, AlOHSO 4 и т.д. Основные соли могут быть образованы только слабыми основаниями многовалентных металлов. Эти соли, как правило, труднорастворимы.

Получение основных солей и перевод их в средние

1. Основные соли получают при взаимодействии избытка основания с кислотой или кислотным оксидом:

Mg(OH) 2 + HCl = MgOHCl¯ + H 2 O

гидроксо-

хлорид магния

Fe(OH) 3 + SO 3 = FeOHSO 4 ¯ + H 2 O

гидроксо-

сульфат железа (III)

2. Основные соли образуются из средней соли при добавлении недостатка щелочи:

Fe 2 (SO 4) 3 + 2NaOH = 2FeOHSO 4 + Na 2 SO 4

3. Основные соли переводят в средние, добавляя кислоту (лучше ту, которая соответствует соли):

MgOHCl + HCl = MgCl 2 + H 2 O

2MgOHCl + H 2 SO 4 = MgCl 2 +MgSO 4 + 2H 2 O


ЭЛЕКТРОЛИТЫ

Электролиты – это вещества, распадающиеся на ионы в растворе под влиянием полярных молекул растворителя (Н 2 О). По способности к диссоциации (распаду на ионы) электролиты условно делят на сильные и слабые. Сильные электролиты диссоциируют практически полностью (в разбавленных растворах), а слабые распадаются на ионы лишь частично.

К сильным электролитам относятся:

· сильные кислоты (см. с. 20);

· сильные основания – щелочи (см. с. 22);

· практически все растворимые соли.

К слабым электролитам относятся:

· слабые кислоты (см. с. 20);

· основания – не щелочи;

Одной из основных характеристик слабого электролита является константа диссоциации К . Например, для одноосновной кислоты,

HA Û H + + A - ,

где, – равновесная концентрация ионов H + ;

– равновесная концентрация анионов кислоты А - ;

– равновесная концентрация молекул кислоты,

Или для слабого основания,

MOH Û M + + OH - ,

,

где, – равновесная концентрация катионов M + ;

– равновесная концентрация гидроксид ионов ОН - ;

– равновесная концентрация молекул слабого основания.

Константы диссоциации некоторых слабых электролитов (при t = 25°С)

Вещество К Вещество К
HCOOH K = 1,8×10 -4 H 3 PO 4 K 1 = 7,5×10 -3
CH 3 COOH K = 1,8×10 -5 K 2 = 6,3×10 -8
HCN K = 7,9×10 -10 K 3 = 1,3×10 -12
H 2 CO 3 K 1 = 4,4×10 -7 HClO K = 2,9×10 -8
K 2 = 4,8×10 -11 H 3 BO 3 K 1 = 5,8×10 -10
HF K = 6,6×10 -4 K 2 = 1,8×10 -13
HNO 2 K = 4,0×10 -4 K 3 = 1,6×10 -14
H 2 SO 3 K 1 = 1,7×10 -2 H 2 O K = 1,8×10 -16
K 2 = 6,3×10 -8 NH 3 × H 2 O K = 1,8×10 -5
H 2 S K 1 = 1,1×10 -7 Al(OH) 3 K 3 = 1,4×10 -9
K 2 = 1,0×10 -14 Zn(OH) 2 K 1 = 4,4×10 -5
H 2 SiO 3 K 1 = 1,3×10 -10 K 2 = 1,5×10 -9
K 2 = 1,6×10 -12 Cd(OH) 2 K 2 = 5,0×10 -3
Fe(OH) 2 K 2 = 1,3×10 -4 Cr(OH) 3 K 3 = 1,0×10 -10
Fe(OH) 3 K 2 = 1,8×10 -11 Ag(OH) K = 1,1×10 -4
K 3 = 1,3×10 -12 Pb(OH) 2 K 1 = 9,6×10 -4
Cu(OH) 2 K 2 = 3,4×10 -7 K 2 = 3,0×10 -8
Ni(OH) 2 K 2 = 2,5×10 -5

Кислые соли

Задания на применение знаний о кислых солях встречаются в вариантах работ ЕГЭ
на разных уровнях сложности (А, В и С). Поэтому при подготовке учащихся к сдаче ЕГЭ
нужно рассмотреть следующие вопросы.

1. Определение и номенклатура.

Кислые соли – это продукты неполного замещения атомов водорода многоосновных кислот на металл. Номенклатура кислых солей отличается от средних только добавлением приставки «гидро…» или «дигидро…» к названию соли, например: NaHCO 3 – гидрокарбонат натрия, Са(Н 2 РО 4) 2 – дигидрофосфат кальция.

2. Получение.

Кислые соли получаются при взаимодействии кислот с металлами, оксидами металлов, гидроксидами металлов, солями, аммиаком, если кислота в избытке.

Например:

Zn + 2H 2 SO 4 = H 2 + Zn(HSO 4) 2 ,

CaO + H 3 PO 4 = CaHPO 4 + H 2 O,

NaOH + H 2 SO 4 = H 2 O + NaHSO 4 ,

Na 2 S + HCl = NaHS + NaCl,

NH 3 + H 3 PO 4 = NH 4 H 2 PO 4 ,

2NH 3 + H 3 PO 4 = (NH 4) 2 HPO 4 .

Также кислые соли получаются при взаимодействии кислотных оксидов со щелочами, если оксид в избытке. Например:

CO 2 + NaOH = NaHCO 3 ,

2SO 2 + Ca(OH) 2 = Ca(HSO 3) 2 .

3. Взаимопревращения.

Средняя соль кислая соль; например:

K 2 СО 3 KНСО 3 .

Чтобы из средней соли получить кислую, нужно добавить избыток кислоты или соответствующего оксида и воды:

K 2 СО 3 + Н 2 О + СО 2 = 2KНСО 3 .

Чтобы из кислой соли получить среднюю, нужно добавить избыток щелочи:

KНСО 3 + KОН = K 2 СО 3 + Н 2 О.

Гидрокарбонаты разлагаются с образованием карбонатов при кипячении:

2KНСО 3 K 2 СО 3 + Н 2 О + СО 2 .

4. Свойства.

Кислые соли проявляют свойства кислот, взаимодействуют с металлами, оксидами металлов, гидроксидами металлов, солями.

Например:

2KНSO 4 + Mg = H 2 + MgSO 4 + K 2 SO 4 ,

2KHSO 4 + MgO = H 2 O + MgSO 4 + K 2 SO 4 ,

2KHSO 4 + 2NaOH = 2H 2 O + K 2 SO 4 + Na 2 SO 4 ,

2KHSO 4 + Cu(OH) 2 = 2H 2 O + K 2 SO 4 + CuSO 4 ,

2KHSO 4 + MgCO 3 = H 2 O + CO 2 + K 2 SO 4 + MgSO 4 ,

2KHSO 4 + BaCl 2 = BaSO 4 + K 2 SO 4 + 2HCl.

5. Задачи на кислые соли. Образование одной соли.

При решении задач на избыток и недостаток нужно помнить о возможности образования кислых солей, поэтому сначала составляют уравнения всех возможных реакций. После нахождения количеств реагирующих веществ делают вывод о том, какая соль получится, и решают задачу по соответствующему уравнению.

З а д а ч а 1. Через раствор, содержащий 60 г NaOH, пропустили 44,8 л СО 2 . Найти массу образовавшейся соли.

Р е ш е н и е

(NaOH) = m /M = 60 (г)/40 (г/моль) = 1,5 моль;

(СО 2) = V /V m = 44,8 (л)/22,4 (л/моль) = 2 моль.

Поскольку (NaOH) : (CO 2) = 1,5: 2 = 0,75: 1, то делаем вывод, что СО 2 в избытке, следовательно, получится кислая соль:

NaOH + CO 2 = NaHCO 3 .

Количество вещества образовавшейся соли равно количеству вещества прореагировавшего гидроксида натрия:

(NaHCO 3) = 1,5 моль.

m (NaHCO 3) = M = 84 (г/моль) 1,5 (моль) = 126 г.

Ответ: m (NaHCO 3) = 126 г.

З а д а ч а 2. Оксид фосфора(V) массой 2,84 г растворили в 120 г 9%-й ортофосфорной кислоты. Полученный раствор прокипятили, затем к нему добавили 6 г гидроксида натрия. Найти массу полученной соли.

Дано: Найти: m (соли).
m (P 2 O 5) = 2,84 г,
m(р-ра)(H 3 PO 4) = 120 г,
(H 3 PO 4) = 9 %,
m (NaOH) = 6 г.

Р е ш е н и е

(P 2 O 5) = m /M = 2,84 (г)/142 (г/моль) = 0,02 моль,

следовательно, 1 (H 3 PO 4 получ.) = 0,04 моль.

m (H 3 PO 4) = m (р-ра) = 120 (г) 0,09 = 10,8 г.

2 (H 3 PO 4) = m /M = 10,8 (г)/98 (г/моль) = 0,11 моль,

(H 3 PO 4) = 1 + 2 = 0,11 + 0,04 = 0,15 моль.

(NaOH) = m /M = 6 (г)/40 (г/моль) = 0,15 моль.

Поскольку

(H 3 PO 4) : (NaOH) = 0,15: 0,15 = 1: 1,

то получится дигидрофосфат натрия:

(NaH 2 PO 4) = 0,15 моль,

m (NaH 2 PO 4) = M = 120 (г/моль) 0,15 (моль) = 18 г.

Ответ: m (NaH 2 PO 4) = 18 г.

З а д а ч а 3. Сероводород объемом 8,96 л пропустили через 340 г 2%-го раствора аммиака. Назовите соль, получившуюся в результате реакции, и определите ее массу.

Ответ: гидросульфид аммония,
m (NH 4 HS) = 20,4 г.

З а д а ч а 4. Газ, полученный при сжигании 3,36 л пропана, прореагировал с 400 мл 6%-го раствора гидроксида калия ( = 1,05 г/мл). Найти состав полученного раствора и массовую долю соли в полученном растворе.

Ответ: (KНСО 3) = 10,23 %.

З а д а ч а 5. Весь углекислый газ, полученный при сжигании 9,6 кг угля, пропустили через раствор, содержащий 29,6 кг гидроксида кальция. Найти массу полученной соли.

Ответ: m (Ca(HCO 3) 2) = 64,8 кг.

З а д а ч а 6. В 9,8 кг 20%-го раствора серной кислоты растворили 1,3 кг цинка. Найти массу полученной соли.

Ответ: m (ZnSO 4) = 3,22 кг.

6. Задачи на кислые соли. Образование смеси двух солей.

Это более сложный вариант задач на кислые соли. В зависимости от количества реагирующих веществ возможно образование смеси двух солей.

Например, при нейтрализации оксида фосфора(V) щелочью в зависимости от молярного соотношения реагентов могут образоваться следующие продукты:

P 2 O 5 + 6NaOH = 2Na 3 PO 4 + 3H 2 O,

(P 2 O 5):(NaOH) = 1:6;

P 2 O 5 + 4NaOH = 2Na 2 HPO 4 + H 2 O,

(P 2 O 5):(NaOH) = 1:4;

P 2 O 5 + 2NaOH + H 2 O = 2NaH 2 PO 4 ,

(P 2 O 5):(NaOH) = 1:2.

Следует помнить, что при неполной нейтрализации возможно образование смеси двух соединений. При взаимодействии 0,2 моль Р 2 О 5 с раствором щелочи, содержащим 0,9 моль NaOH, молярное соотношение находится между 1:4 и 1:6. В этом случае образуется смесь двух солей: фосфата натрия и гидрофосфата натрия.

Если раствор щелочи будет содержать 0,6 моль NaOH, то молярное соотношение будет другим: 0,2:0,6 = 1:3, оно находится между 1:2 и 1:4, поэтому получится смесь двух других солей: дигидрофосфата и гидрофосфата натрия.

Эти задачи можно решать разными способами. Мы будем исходить из предположения, что одновременно происходят две реакции.

А л г о р и т м р е ш е н и я

1. Составить уравнения всех возможных реакций.

2. Найти количества реагирующих веществ и по их соотношению определить уравнения двух реакций, которые происходят одновременно.

3. Обозначить количество одного из реагирующих веществ в первом уравнении как х моль, во втором – у моль.

4. Выразить через х и у количества другого реагирующего вещества согласно молярным соотношениям по уравнениям.

5. Составить систему уравнений с двумя неизвестными.

З а д а ч а 1. Оксид фосфора(V), полученный при сжигании 6,2 г фосфора, пропустили через 200 г 8,4%-го раствора гидроксида калия. Какие вещества и в каких количествах получаются?

Дано: Найти: 1 ; 2 .
m (P) = 6,2 г,
m (р-ра KОН) = 200 г,
(KОН) = 8,4 %.

Р е ш е н и е

(P) = m /M = 6,2 (г)/31 (г/моль) = 0,2 моль,

Ответ. ((NH 4) 2 HPO 4) = 43,8 %,
(NH 4 H 2 PO 4) = 12,8 %.

З а д а ч а 4. К 50 г раствора ортофосфорной кислоты с массовой долей 11,76 % прибавили 150 г раствора гидроксида калия с массовой долей 5,6 %. Найти состав остатка, полученного при выпаривании раствора.

Ответ: m (K 3 PO 4) = 6,36 г,
m (K 2 HPO 4) = 5,22 г.

З а д а ч а 5. Сожгли 5,6 л бутана (н.у.) и образовавшийся углекислый газ пропустили через раствор, содержащий 102,6 г гидроксида бария. Найти массы полученных солей.

Ответ: m (BaCO 3) = 39,4 г,
m (Ba(HCO 3) 2) = 103,6 г.

Солями называются сложные вещества, молекулы которых, состоят из атомов металлов и кислотных остатков (иногда могут содержать водород). Например, NaCl – хлорид натрия, СаSO 4 – сульфат кальция и т. д.

Практически все соли являются ионными соединениями, поэтому в солях между собой связаны ионы кислотных остатков и ионы металла:

Na + Cl – – хлорид натрия

Ca 2+ SO 4 2– – сульфат кальция и т.д.

Соль является продуктом частичного или полного замещения металлом атомов водорода кислоты. Отсюда различают следующие виды солей:

1. Средние соли – все атомы водорода в кислоте замещены металлом: Na 2 CO 3 , KNO 3 и т.д.

2. Кислые соли – не все атомы водорода в кислоте замещены металлом. Разумеется, кислые соли могут образовывать только двух- или многоосновные кислоты. Одноосновные кислоты кислых солей давать не могут: NaHCO 3 , NaH 2 PO 4 ит. д.

3. Двойные соли – атомы водорода двух- или многоосновной кислоты замещены не одним металлом, а двумя различными: NaKCO 3 , KAl(SO 4) 2 и т.д.

4. Соли основные можно рассматривать как продукты неполного, или частичного, замещения гидроксильных групп оснований кислотными остатками: Аl(OH)SO 4 , Zn(OH)Cl и т.д.

По международной номенклатуре название соли каждой кислоты происходит от латинского названия элемента. Например, соли серной кислоты называются сульфатами: СаSO 4 – сульфат кальция, Mg SO 4 – сульфат магния и т.д.; соли соляной кислоты называются хлоридами: NaCl – хлорид натрия, ZnCI 2 – хлорид цинка и т.д.

В название солей двухосновных кислот добавляют частицу «би» или «гидро»: Mg(HCl 3) 2 – бикарбонат или гидрокарбонат магния.

При условии, что в трехосновной кислоте замещён на металл только один атом водорода, то добавляют приставку «дигидро»: NaH 2 PO 4 – дигидрофосфат натрия.

Соли – это твёрдые вещества, обладающие самой различной растворимостью в воде.

Химические свойства солей

Химические свойства солей определяются свойствами катионов и анионов, которые входят в их состав.

1. Некоторые соли разлагаются при прокаливании:

CaCO 3 = CaO + CO 2

2. Взаимодействуют с кислотами с образованием новой соли и новой кислоты. Для осуществление этой реакции необходимо, чтобы кислота была более сильная чем соль, на которую воздействует кислота:

2NaCl + H 2 SO 4 → Na 2 SO 4 + 2HCl.

3. Взаимодействуют с основаниями , образуя новую соль и новое основание:

Ba(OH) 2 + Mg SO 4 → BaSO 4 ↓ + Mg(OH) 2 .

4. Взаимодействуют друг с другом с образованием новых солей:

NaCl + AgNO 3 → AgCl + NaNO 3 .

5. Взаимодействуют с металлами, которые стоят в раду активности до металла, который входит в состав соли:

Fe + CuSO 4 → FeSO 4 + Cu↓.

Остались вопросы? Хотите знать больше о солях?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Основания

Основаниями называются соединения, содержащие в качестве аниона только гидроксид ионов ОН - . Число гидроксид ионов, способных замещаться кислотным остатком, определяет кислотность основания. В связи с этим основания бывают одно-, двух- и поликислотные однако к истинным основаниям чаще всего относят одно- и двухкислотные. Среди них следует выделить растворимые и не растворимые в воде основания. Учтите, что растворимые в воде и диссоциирующие при этом практически нацело основания называют щелочами (сильные электролиты). К ним относятся гидроксиды щелочных и щелочноземельных элементов и ни в коем случае раствор аммиака в воде.

Название основания начинается со слова гидроксид, после которого в родительном падеже приводится русское название катиона, а в круглых скобках указывается его заряд. Допускается перечисление количества гидроксид ионов с помощью приставок ди-, три-, тетра. Например: Mn(OH) 3 - гидроксид марганца (III) или тригидроксид марганца.

Обратите внимание на то, что между основаниями и основными оксидами существует генетическая связь: основным оксидам соответствуют основания. Поэтому катионы оснований чаще всего имеют заряд один или два, что соответствует низшим степеням окисления металлов.

Запомните основные способы получения оснований

1. Взаимодейетвие активных металлов с водой:

2Na + 2Н 2 О = 2NаОН + Н 2

Lа + 6Н 2 О = 2Lа(ОН) 3 + 3H 2

Взаимодействие основных оксидов с водой:

СаО + Н 2 О = Са(ОН) 2

МgО + Н 2 О = Мg(ОН) 2 .

3. Взаимодействие солей со щелочами:

МnSO 4 + 2КОН = Mn(OH) 2 ↓ + K 2 SО 4

NH 4 С1 + NaOH = NaCl + NH 3 ∙ H 2 O

Nа 2 СO 3 + Са(ОН) 2 = 2NаОН + CaCO 3

MgOHCl + NaOH = Mg(OH) 2 + NaCl.

Электролиз водных растворов солей с диафрагмой:

2NaCl + 2H 2 O → 2NaOH + Cl 2 + Н 2

Учтите, что в пункте 3 исходные реагенты необходимо подбирать таким образом, чтобы среди продуктов реакции было либо труднорастворимое соединение, либо слабый электролит.

Обратите внимание на то, что при рассмотрении химических свойств оснований условия проведения реакций зависят от растворимости основания.

1. Взаимодействие с кислотами:

NaOH + Н 2 SO 4 = NaHSO 4 + Н 2 O

2NaOH + Н 2 SO 4 = Na 2 SO 4 + 2Н 2 O

2Mg(OH) 2 + H 2 SO 4 = (MgOH) 2 SO 4 + 2H 2 O

Mg(OH) 2 + H 2 SO 4 = MgSO 4 + 2H 2 O

Mg(OH) 2 + 2H 2 SO 4 = Mg(HSO 4) 2 + 2H 2 O

2. Взаимодействие с кислотными оксидами:

NaOH + CO 2 = NaHCO 3

2NaOH + CO 2 = Na 2 CO 3 + H 2 O

Fe(OH) 2 + P 2 O 5 = Fe(PO 3) 2 + H 2 O

ЗFе(OH) 2 + P 2 O 5 = Fe 3 (PO 4) 2 + 2H 2 O

3. Взаимодействие с амфотерными оксидами:

А1 2 O 3 + 2NaOH p +3H 2 O = 2Na

Al 2 O 3 + 2NaOH T = 2NaAlO 2 + H 2 O


Cr 2 O 3 + Mg(OH) 2 = Mg(CrO 2) 2 + H 2 O

4. Взаимодействие с амфтерными гидроксидами:

Са(ОН) 2 + 2Al(ОН) 3 = Ca(AlO 2) 2 + 4H 2 O

3NaOH + Cr(ОН) 3 = Na 3

Взаимодействие с солями.

К реакциям, описанным в пункте 3 способов получения, следует добавить:

2ZnSO 4 + 2КОН = (ZnOH) 2 S0 4 + K 2 SO 4

NaHCO 3 + NaOH = Na 2 CO 3 + Н 2 O

BeSO 4 + 4NaOH = Na 2 + Na 2 SO 4

Cu(OH) 2 + 4NH 3 ∙H 2 O = (OH) 2 + 4H 2 O

6. Окисление до амфотерных гидроксидов или солей:

4Fe(ОН) 2 + O 2 + 2Н 2 O = 4Fe(OH) 3

2Сг(ОН) 2 + 2Н 2 O + Na 2 O 2 + 4NaOH = 2Na 3 .

7. Разложение при нагревании:

Са(OН) 2 = СаО + Н 2 О.

Учтите, что гидроксиды щелочных металлов, кроме лития, в таких реакциях не участвуют.

!!!Бывают ли щелочные осадки?!!! Да, бывают, однако они не столь распространены, как кислотные осадки, малоизвестны, а их влияние на объекты окружающей среды практически не исследовано. Тем не менее их рассмотрение заслуживает внимания.

Происхождение щелочных осадков можно объяснить следующим образом.

СаСО 3 →СаО + СO 2

В атмосфере оксид кальция соединяется с водяными парами при их конденсации, с дождем или мокрым снегом, образуя при этом гидроксид кальция:

CaO + H 2 O →Ca(OH) 2 ,

который и создает щелочную реакцию атмосферных осадков. В дальнейшем возможно взаимодействие гидроксида кальция с углекислым газом и водой с образованием карбоната и гидрокарбоната кальция:

Са(ОН) 2 + СO 2 → СаСO 3 + Н 2 О;

СаСО 3 + СO 2 + H 2 O → Са(НС0 3) 2 .

Химический анализ дождевой воды показал, что в ней в незначительном количестве присутствуют сульфат- и нитрат-ионы (порядка 0,2 мг/л). Как известно, причиной кислотного характера осадков являются серная и азотная кислоты. В то же время наблюдается большое содержание катионов кальция (5-8 мг/л) и гидрокарбонат-ионов, содержание которых в районе предприятий строительного комплекса в 1,5-2 раза больше, чем в других районах города, и составляет 18-24 мг/л. Это показывает, что в образовании локальных щелочных осадков главную роль играет карбонатно-кальциевая система и происходящие в ней процессы, о чем было сказано выше.

Щелочные осадки оказывают влияние на растения, отмечаются изменения в фенотипическом строении растений. Наблюдаются следы «ожогов» на листовых пластинках, белый налет на листьях и угнетенное состояние травянистых растений.

Видеоурок 1: Классификация неорганических солей и их номенклатура

Видеоурок 2: Способы получения неорганических солей. Химические свойства солей

Лекция: Характерные химические свойства солей: средних, кислых, основных; комплексных (на примере соединений алюминия и цинка)


Характеристика солей

Соли – это такие химические соединения, состоящие из катионов металлов (или аммония) и кислотных остатков.

Соли так же следует рассматривать в виде продукта взаимодействия кислоты и основания. В итоге данного взаимодействия, могут образовываться:

    нормальные (средние),

  • основные соли.

Нормальные соли образуются при достаточном для полного взаимодействия количестве кислоты и основания. К примеру:

    Н 3 РО 4 + 3КОН → К 3 РО 4 + 3Н 2 О.

Названия нормальных солей состоят из двух частей. В начале называется анион (кислотный остаток), затем катион. Например: хлорид натрия - NaCl, сульфат железа(III) - Fe 2 (SО 4) 3 , карбонат калия - K 2 CO 3 , фосфат калия - K 3 PO 4 и др.

Кислые соли образуются при избытке кислоты и недостаточном количестве щелочи, потому как при этом катионов металла становится недостаточно для замещения всех катионов водорода, имеющихся в молекуле кислоты. К примеру:

    Н 3 РО 4 + 2КОН = К 2 НРО 4 + 2Н 2 О;

    Н 3 РО 4 + КОН = КН 2 РО 4 + Н 2 О.

В составе кислотных остатков данного вида солей вы всегда увидите водород. Кислые соли всегда возможны для многоосновных кислот, а для одноосновных нет.

В названиях кислых солей ставится приставка гидро- к аниону. Например: гидросульфат железа(III)- Fe(HSO 4) 3 , гидрокарбонат калия - KHCO 3 , гидрофосфат калия - K 2 HPO 4 и др.

Основные соли образуются при избытке основания и недостаточном количестве кислоты, потому как в данном случае анионов кислотных остатков недостаточно для полного замещения гидроксогрупп, имеющихся в основании. К примеру:

    Cr(OH) 3 + HNO 3 → Cr(OH) 2 NO 3 + H 2 O;

    Cr(OH) 3 + 2HNO 3 → CrOH(NO 3) 2 + 2H 2 O.

Таким образом основные соли в составе катионов содержат гидроксогруппы. Основные соли возможны для многокислотных оснований, а для однокислотных нет. Некоторые основные соли способны самостоятельно разлагаться, при этом выделяя воду, образуя оксосоли, обладающие свойствами основных солей. К примеру:

    Sb(OH) 2 Cl → SbOCl + H 2 O;

    Bi(OH) 2 NO 3 → BiONO 3 + H 2 O.

Название основных солей строится следующим образом: к аниону добавляется приставка гидроксо- . Например: гидроксосульфат железа(III) - FeOHSO 4 , гидроксосульфат алюминия - AlOHSO 4 , дигидроксохлорид железа (III) - Fe(OH) 2 Cl и др.

Многие соли, находясь в твердом агрегатном состоянии, являются кристаллогидратами: CuSO4.5H2O; Na2CO3.10H2O и т.д.

Химические свойства солей


Соли – это достаточно твердые кристаллические вещества, имеющие ионную связь между катионами и анионами. Свойства солей обусловлены их взаимодействием с металлами, кислотами, основаниями и солями.

Типичные реакции нормальных солей


С металлами реагируют хорошо. При этом, более активные металлы вытесняют менее активные из растворов их солей. К примеру:

    Zn + CuSO 4 → ZnSO 4 + Cu;

    Cu + Ag 2 SO 4 → CuSO 4 + 2Ag.

С кислотами, щелочами и другими солями реакции проходят до конца, при условии образования осадка, газа или малодиссоциируемых соединений. Например, в реакциях солей с кислотами образуются такие вещества, как сероводород H 2 S – газ; сульфат бария BaSO 4 – осадок; уксусная кислота CH 3 COOH – слабый электролит, малодиссоциируемое соединение. Вот уравнения данных реакций:

    K 2 S + H 2 SO 4 → K 2 SO 4 + H 2 S;

    BaCl 2 + H 2 SO 4 → BaSO 4 + 2HCl;

    CH 3 COONa + HCl → NaCl + CH 3 COOH.

В реакциях солей со щелочами образуются такие вещества, как гидроксид никеля (II) Ni(OH) 2 – осадок; аммиак NH 3 – газ; вода H 2 О – слабый электролит, малодиссоциируемое соединение:

    NiCl 2 + 2KOH → Ni(OH) 2 + 2KCl;

    NH 4 Cl + NaOH → NH 3 +H 2 O +NaCl.

Соли реагируют между собой, если образуется осадок:

    Ca(NO 3) 2 + Na 2 CO 3 → 2NaNO 3 + CaCO 3 .

Или в случае образования более устойчивого соединения:

    Ag 2 CrO 4 + Na 2 S → Ag 2 S + Na 2 CrO 4 .

В этой реакции из кирпично-красного хромата серебра образуется черный сульфид серебра, ввиду того, что он является более нерастворимым осадком, чем хромат.

Многие нормальные соли разлагаются при нагревании с образованием двух оксидов – кислотного и основного:

    CaCO 3 → СаО + СО 2 .

Нитраты разлагаются другим, отличным от остальных нормальных солей образом. При нагревании нитраты щелочных и щелочноземельных металлов выделяют кислород и превращаются в нитриты:

    2NaNО 3 → 2NaNО 2 + О 2 .

Нитраты почти всех других металлов разлагаются до оксидов:

    2Zn(NO 3) 2 → 2ZnO + 4NO 2 + O 2 .

Нитраты некоторых тяжелых металлов (серебра, ртути и др) разлагаются при нагревании до металлов:

    2AgNO 3 → 2Ag + 2NO 2 + О 2 .

Особое положение занимает нитрат аммония, который до температуры плавления (170 о С) частично разлагается по уравнению:

    NH 4 NO 3 → NH 3 + HNO 3 .

При температурах 170 - 230 о С, по уравнению:

    NH 4 NO 3 → N 2 O + 2H 2 O.

При температурах выше 230 о С - со взрывом, по уравнению:

    2NH 4 NO 3 → 2N 2 + O 2 + 4H 2 O.

Хлорид аммония NH 4 Cl разлагается с образованием аммиака и хлороводорода:

    NH 4 Cl → NH 3 + НCl.

Типичные реакции кислых солей


Они вступают во все те реакции, в которые вступают кислоты. Со щелочами реагируют следующим образом, если в составе кислой соли и щелочи имеется один и тот же металл, то в результате образуется нормальная соль. К примеру:

    NаHCO 3 + OH → Nа 2 CO 3 + H 2 O .

Если же щелочь содержит другой металл, то образуются двойные соли. Пример образования карбоната лития - натрия:

    NаHCO 3 + LiOH Li NаCO 3 + H 2 O .

Типичные реакции основных солей


Данные соли вступают в те же реакции, что и основания. С кислотами реагируют следующим образом, если в составе основной соли и кислоты имеется один и тот же кислотный остаток, то в результате образуется нормальная соль. К примеру:

    Cu(OH )Cl + HCl CuCl 2 + H 2 O .

Если же кислота содержит другой кислотный остаток, то образуются двойные соли. Пример образования хлорида меди - брома:

    Cu(OH )Cl + HBr CuBr Cl + H 2 O .

Комплексные соли

Комплексное соединение - соединение, в узлах кристаллической решетки которого содержатся комплексные ионы.

Рассмотрим комплексные соединения алюминия - тетрагидроксоалюминаты и цинка - тетрагидроксоцинкаты. В квадратных скобках формул данных веществ указываются комплексные ионы.

Химические свойства тетрагидроксоалюмината натрия Na и тетрагидроксоцинката натрия Na 2 :

1. Как и все комплексные соединения выше названные вещества диссоциируются:

  • Na → Na + + - ;
  • Na 2 → 2Na + + - .

Имейте ввиду, что дальнейшая диссоциация комплексных ионов невозможна.

2. В реакциях с избытком сильных кислот образуют две соли. Рассмотрим реакцию тетрагидроксоалюмината натрия с разбавленным раствором хлороводорода:

  • Na + 4HCl AlCl 3 + NaCl + H 2 O .

Мы видим образование двух солей: хлорида алюминия, хлорида натрия и воды. Подобная реакция произойдет и в случае с тетрагидроксоцинкатом натрия.

3. Если же сильной кислоты будет недостаточно, допустим вместо 4 HCl мы взяли 2 HCl, то соль образует наиболее активный металл, в данном случае натрий активнее, значит образуется хлорид натрия, а образовавшиеся гидроксиды алюминия и цинка выпадут в осадок. Этот случай рассмотрим на уравнении реакции с тетрагидроксоцинкатом натрия:

    Na 2 + 2HCl → 2NaCl + Zn (OH) 2 ↓ +2H 2 O .



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама