THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Рассмотрим задачу приведения уравнения линии второго порядка к наиболее простому (каноническому) виду.

Напомним, что алгебраической линией второго порядка называется геометрическое место точек плоскости, которое в какой-либо аффинной системе координат Ox_1x_2 может быть задано уравнением вида p(x_1,x_2)=0, где p(x_1,x_2) - многочлен второй степени двух переменных Ox_1x_2 . Требуется найти прямоугольную систему координат, в которой уравнение линии приняло бы наиболее простой вид.

Результатом решения поставленной задачи является следующая основная теорема (3.3)

Классификация алгебраических линий второго порядка (теорема 3.3)

Для любой алгебраической линии второго порядка существует прямоугольная система координат Oxy , в которой уравнение этой линии принимает один из следующих девяти канонических видов:

Теорема 3.3 дает аналитические определения линий второго порядка. Согласно пункту 2 замечаний 3.1, линии (1), (4), (5), (6), (7), (9) называются вещественными (действительными), а линии (2), (3), (8) - мнимыми.

Приведем доказательство теоремы, поскольку оно фактически содержит алгоритм решения поставленной задачи.

Без ограничения общности можно предполагать, что уравнение линии второго порядка задано в прямоугольной системе координат Oxy . В противном случае можно перейти от непрямоугольной системы координат Ox_1x_2 к прямоугольной Oxy , при этом уравнение линии будет иметь тот же вид и ту же степень согласно теореме 3.1 об инвариантности порядка алгебраической линии.

Пусть в прямоугольной системе координат Oxy алгебраическая линия второго порядка задана уравнением

A_{11}x^2+2a_{12}xy+a_{22}y^2+2a_1x+2a_2y+a_0=0,

в котором хотя бы один из старших коэффициентов a_{11},a_{12},a_{22} отличен от нуля, т.е. левая часть (3.34) - многочлен двух переменных x,y второй степени. Коэффициенты при первых степенях переменных x и y , а также при их произведении x\cdot y взяты удвоенными просто для удобства дальнейших преобразований.

Для приведения уравнения (3.34) к каноническому виду используются следующие преобразования прямоугольных координат:

– поворот на угол \varphi

\begin{cases}x=x"\cdot\cos\varphi-y"\cdot\sin\varphi,\\y=x"\cdot\sin\varphi+y"\cdot\cos\varphi;\end{cases}

– параллельный перенос

\begin{cases}x=x_0+x",\\y=y_0+y";\end{cases}

– изменение направлений координатных осей (отражения в координатных осях):

оси ординат \begin{cases}x=x",\\y=-y",\end{cases} оси абсцисс \begin{cases}x=-x",\\y=y",\end{cases} обеих осей \begin{cases}x=-x",\\y=-y";\end{cases}

– переименование координатных осей (отражение в прямой y=x )

\begin{cases}x=y",\\y=x",\end{cases}

где x,y и x",y" - координаты произвольной точки в старой (Oxy) и новой O"x"y" системах координат соответственно.

Кроме преобразования координат обе части уравнения можно умножать на отличное от нуля число.

Рассмотрим сначала частные случаи, когда уравнение (3.34) имеет вид:

\begin{aligned} &\mathsf{(I)\colon}~ \lambda_2\cdot y^2+a_0,~\lambda_2\ne0;\\ &\mathsf{(II)\colon}~ \lambda_2\cdot y^2+2\cdot a_1\cdot x,~\lambda_2\ne0,~a_1\ne0;\\ &\mathsf{(III)\colon}~ \lambda_1\cdot x^2+\lambda_2\cdot y^2+a_0,~\lambda_1\ne0,~\lambda_2\ne0. \end{aligned}

Эти уравнения (также многочлены в левых частях) называются приведенными. Покажем, что приведенные уравнения (I), (II), (III) сводятся к каноническим (1)–(9).

Уравнение (I). Если в уравнении (I) свободный член равен нулю (a_0=0) , то, разделив обе части уравнения \lambda_2y^2=0 на старший коэффициент (\lambda_0\ne0) , получим y^2=0 - уравнение двух совпадающих прямых (9), содержащих ось абсцисс y=0 . Если же свободный член отличен от нуля a_0\ne0 , то разделим обе части уравнения (I) на старший коэффициент (\lambda_2\ne0): y^2+\frac{a_0}{\lambda_2}=0 . Если величина отрицательная, то, обозначив ее через -b^2 , где b=\sqrt{-\frac{a_0}{\lambda_2}} , получаем y^2-b^2=0 - уравнение пары параллельных прямых (7): y=b или y=-b . Если же величина \frac{a_0}{\lambda_2} положительная, то, обозначив ее через b^2 , где b=\sqrt{\frac{a_0}{\lambda_2}} , получаем y^2+b^2=0 - уравнение пары мнимых параллельных прямых (8). Это уравнение не имеет действительных решений, поэтому на координатной плоскости нет точек, отвечающих этому уравнению. Однако в области комплексных чисел уравнение y^2+b^2=0 имеет два сопряженных решения y=\pm ib , которые иллюстрируются штриховыми линиями (см. пункт 8 теоремы 3.3).

Уравнение (II). Разделим уравнение на старший коэффициент (\lambda_2\ne0) и перенесем линейный член в правую часть: y^2=-\frac{2a_1}{\lambda_2}\,x . Если величина отрицательная, то, обозначая p=-\frac{a_1}{\lambda_2}>0 , получаем y^2=2px - уравнение параболы (6). Если величина \frac{a_1}{\lambda_2} положительная, то, изменяя направление оси абсцисс, т.е. выполняя второе преобразование в (3.37), получаем уравнение (y")^2=\frac{2a_1}{\lambda_2}\,x" или (y")^2=2px" , где p=\frac{a_1}{\lambda_2}>0 . Это уравнение параболы в новой системе координат Ox"y" .

Уравнение (III). Возможны два случая: либо старшие коэффициенты одного знака (эллиптический случай), либо противоположных знаков (гиперболический случай).

В эллиптическом случае (\lambda_1\lambda_2>0)

\mathsf{(III)}\quad\Leftrightarrow\quad \lambda_1\cdot x^2+\lambda_2\cdot y^2=-a_0\quad \Leftrightarrow \quad \frac{\lambda_1}{-a_0}\cdot x^2+\frac{\lambda_2}{-a_0}\cdot y^2=1

Противоположен знаку a_0 , то, обозначая положительные величины и \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 - уравнение эллипса (1).

Если знак старших коэффициентов \lambda_1,\lambda_2 совпадает со знаком a_0 , то, обозначая положительные величины \frac{a_0}{\lambda_1} и \frac{a_0}{\lambda_2} через a^2 и b^2 , получаем -\frac{x^2}{a^2}-\frac{y^2}{b^2}=1~\Leftrightarrow~\frac{x^2}{a^2}+\frac{y^2}{b^2}=-1 - уравнение мнимого эллипса (2). Это уравнение не имеет действительных решений. Однако оно имеет решения в области комплексных чисел, которые иллюстрируются штриховой линией (см. пункт 2 теоремы 3.3).

Можно считать, что в уравнениях эллипса (действительного или мнимого) коэффициенты удовлетворяют неравенству a\geqslant b , в противном случае этого можно добиться, переименовывая координатные оси, т.е. делая преобразование (3.38) системы координат.

Если свободный член уравнения (III) равен нулю (a_0=0) , то, обозначая положительные величины \frac{1}{|\lambda_1|} и \frac{1}{|\lambda_2|} через a^2 и b^2 , получаем \frac{x^2}{a^2}+\frac{y^2}{b^2}=0 - уравнение пары мнимых пересекающихся прямых (3). Этому уравнению удовлетворяет только точка с координатами x=0 и y=0 , т.е. точка O - начало координат. Однако в области комплексных чисел левую часть уравнения можно разложить на множители \frac{x^2}{a^2}+\frac{y^2}{b^2}=\left(\frac{y}{b}+i\,\frac{x}{a}\right)\!\!\left(\frac{y}{b}-i\,\frac{x}{a}\right) , поэтому уравнение имеет сопряженные решения y=\pm i\,\frac{b}{a}\,x , которые иллюстрируются штриховыми линиями, пересекающимися в начале координат (см. пункт 3 теоремы 3.3).

В гиперболическом случае (\lambda_1,\lambda_2<0) при a_0\ne0 переносим свободный член в правую часть и делим обе части на -a_0\ne0 :

\mathsf{(III)}\quad \Leftrightarrow \quad \lambda_1\cdot x^2+\lambda_2\cdot y^2=-a_0 \quad \Leftrightarrow \quad \frac{\lambda_1}{-a_0}\cdot x^2+\frac{\lambda_2}{-a_0}\cdot y^2=1.

Величины \frac{-a_0}{\lambda_1} и \frac{-a_0}{\lambda_2} имеют противоположные знаки. Без ограничения общности считаем, что знак \lambda_2 совпадает со знаком свободного члена a_0 , т.е. \frac{a_0}{\lambda_2}>0 . В противном случае нужно переименовать координатные оси, т.е. сделать преобразование (3.38) системы координат. Обозначая положительные величины \frac{-a_0}{\lambda_1} и \frac{a_0}{\lambda_2} через a^2 и b^2 , получаем \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 - уравнение гиперболы (4).

Пусть в уравнении (III) свободный член равен нулю (a_0=0) . Тогда можно считать, что \lambda_1>0 , а \lambda_2<0 (в противном случае обе части уравнения умножим на –1) . Обозначая положительные величины \frac{1}{\lambda_1} и -\frac{1}{\lambda_2} через a^2 и b^2 , получаем \frac{x^2}{a^2}-\frac{y^2}{b^2}=0 - уравнение пары пересекающихся прямых (5). Уравнения прямых находятся в результате разложения на множители левой части уравнения

\frac{x^2}{a^2}-\frac{y^2}{b^2}=\left(\frac{x}{a}-\frac{y}{b}\right)\!\!\left(\frac{x}{a}+\frac{y}{b}\right)=0 , то есть y=\pm\frac{b}{a}\cdot x

Таким образом, приведенные уравнения (I),(II),(III) алгебраической линии второго порядка сводятся к одному из канонических видов (1)–(9), перечисленных в теореме 3.3.

Осталось показать, что общее уравнение (3.34) можно свести к приведенным при помощи преобразований прямоугольной системы координат.

Упрощение общего уравнения (3.34) производится в два этапа. На первом этапе при помощи поворота системы координат "уничтожается" член с произведением неизвестных. Если произведения неизвестных нет (a_{12}=0) , то поворот делать не надо (в этом случае переходим сразу ко второму этапу). На втором этапе при помощи параллельного переноса "уничтожаются" один или оба члена первой степени. В результате получаются приведенные уравнения (I),(II),(III).

Первый этап: преобразование уравнения линии второго порядка при повороте прямоугольной системы координат.

Если коэффициент a_{12}\ne0 , выполним поворот системы координат на угол \varphi . Подставляя выражения (3.35) в уравнение (3.34), получаем:

\begin{gathered} a_{11}(x"\cos\varphi-y"\sin\varphi)^2+2a_{12}(x"\cos\varphi-y"\sin\varphi)(x"\sin\varphi+y"\cos\varphi)+a_{22}(x"\sin\varphi+y"\cos\varphi)^2+\\ +2a_1(x"\cos\varphi-y"\sin\varphi)+2a_2(x"\cos\varphi-y"\sin\varphi)+a_0=0. \end{gathered}

Приводя подобные члены, приходим к уравнению вида (3.34):

A"_{11}(x")^2+2a"_{12}x"y"+a"_{22}(y")^2+2a"_1x"+2a"_2y"+a"_0=0,

\begin{aligned}a"_{11}&=a_{11}\cos^2\varphi+2a_{12}\cos\varphi\sin\varphi+a_{22}\sin^2\varphi;\\ a"_{12}&=-a_{11}\cos\varphi\sin\varphi+a_{12}(\cos^2\varphi-\sin^2\varphi)+a_{22}\cos\varphi\sin\varphi;\\ a"_{22}&=a_{11}\sin^2\varphi-2a_{12}\cos\varphi\sin\varphi+a_{22}\cos^2\varphi;\\ a"_1&=a_1\cos\varphi+a_2\sin\varphi;\quad a"_2=-a_1\sin\varphi+a_2\cos\varphi; \quad a"_0=a_0. \end{aligned}

Определим угол \varphi так, чтобы a"_{12}=0 . Преобразуем выражение для a"_{12} , переходя к двойному углу:

A"_{12}= -\frac{1}{2}\,a_{11}\sin2\varphi+a_{12}\cos2\varphi+\frac{1}{2}\,a_{22}\sin2\varphi= \frac{a_{22}-a_{11}}{2}\,\sin2\varphi+a_{12}\cos2\varphi.

Угол \varphi должен удовлетворять однородному тригонометрическому уравнению \frac{a_{22}-a_{11}}{2}\,\sin2\varphi+a_{12}\cos2\varphi=0 , которое равносильно уравнению

\operatorname{ctg}2\varphi=\frac{a_{11}-a_{22}}{2a_{12}},

поскольку a_{12}\ne 0 . Это уравнение имеет бесконечное количество корней

\varphi=\frac{1}{2}\operatorname{arcctg}\frac{a_{11}-a_{22}}{2a_{12}}+\frac{\pi}{2}\,n, \quad n\in\mathbb{Z}.


Выберем любой из них, например, угол \varphi из интервала 0<\varphi<\frac{\pi}{2} . Тогда в уравнении (3.39) исчезнет член 2a"_{12}x"y" , поскольку a"_{12}=0 .

Обозначив оставшиеся старшие коэффициенты через \lambda_1= a" и \lambda_2=a"_{22} , получим уравнение

\lambda_1\cdot(x")^2+\lambda_2\cdot(y")^2+2\cdot a"_1\cdot x"+2\cdot a"_2\cdot y"+a"_0=0.

Согласно теореме 3.1, уравнение (3.41) является уравнением второй степени (при преобразовании (3.35) порядок линии сохраняется), т.е. хотя бы один из старших коэффициентов \lambda_1 или \lambda_2 отличен от нуля. Далее будем считать, что именно коэффициент при (y")^2 не равен нулю (\lambda_2\ne0) . В противном случае (при \lambda_2=0 и \lambda_1\ne0 ) следует сделать поворот системы координат на угол \varphi+\frac{\pi}{2} , который также удовлетворяет условию (3.40). Тогда вместо координат x",y" в (3.41) получим y",-x" соответственно, т.е. отличный от нуля коэффициент \lambda_1 будет при (y")^2 .

Второй этап: преобразование уравнения линии второго порядка при параллельном переносе прямоугольной системы координат.

Уравнение (3.41) можно упростить, выделяя полные квадраты. Нужно рассмотреть два случая: \lambda_1\ne0 или \lambda_1=0 (согласно предположению \lambda_2\ne0 ), которые называются центральный (включающий эллиптический и гиперболический случаи) или параболический соответственно. Геометрический смысл этих названий раскрывается в дальнейшем.

Центральный случай: \lambda_1\ne0 и \lambda_2\ne0 . Выделяя полные квадраты по переменным x",y" , получаем

\begin{gathered}\lambda_1\left[(x")^2+2\,\frac{a"_1}{\lambda_1}\,x"+{\left(\frac{a"_1}{\lambda_1}\right)\!}^2\right]+ \lambda_2\left[(y")^2+2\,\frac{a"_2}{\lambda_2}\,y"+{\left(\frac{a"_2}{\lambda_2}\right)\!}^2\right]- \lambda_1{\left(\frac{a"_1}{\lambda_1}\right)\!}^2-\lambda_2{\left(\frac{a"_2}{\lambda_2}\right)\!}^2+a"_0=0~\Leftrightarrow\\ \Leftrightarrow~ \lambda_1{\left(x"+\frac{a"_1}{\lambda_1}\right)\!}^2+\lambda_2{\left(y"+\frac{a"_2}{\lambda_2}\right)\!}^2- \lambda_1{\left(\frac{a"_1}{\lambda_1}\right)\!}^2-\lambda_2{\left(\frac{a"_2}{\lambda_2}\right)\!}^2+a"_0=0. \end{gathered}

После замены переменных

\left\{\begin{aligned} x""&=x"+\frac{a"_1}{\lambda_1},\\ y""&=y"+\frac{a"_2}{\lambda_2}, \end{aligned}\right.

получаем уравнение

\lambda_1\,(x"")^2+\lambda_2\,(y"")^2+a""_0=0,

где a""_0=-\lambda_1{\left(\frac{a"_1}{\lambda_1}\right)\!}^2-\lambda_2{\left(\frac{a"_2}{\lambda_2}\right)\!}^2+a"_0 .

Параболический случай: \lambda_1=0 и \lambda_2\ne0 . Выделяя полный квадрат по переменной y" , получаем

\begin{gathered} \lambda_2\left[(y")^2+2\cdot\frac{a"_2}{\lambda_2}\cdot y"+{\left(\frac{a"_2}{\lambda_2}\right)\!}^2\right]+2\cdot a"_1\cdot x"-\lambda_2{\left(\frac{a"_2}{\lambda_2}\right)\!}^2+a"_0=0 \quad \Leftrightarrow \\ \Leftrightarrow \quad \lambda_2{\left(y"+\frac{a"_2}{\lambda_2}\right)\!}^2+2\cdot a"_1\cdot x"-\lambda_2{\left(\frac{a"_2}{\lambda_2}\right)\!}^2+a"_0=0.\end{gathered}

Если a"_1\ne0 , то последнее уравнение приводится к виду

\lambda_2{\left(y"+ \frac{a"_2}{\lambda_2}\right)\!}^2+ 2\cdot a"_1\left=0.

Сделав замену переменных

\left\{\begin{aligned} x""&=x"+\frac{a"_0}{2a"_1}- \frac{\lambda_2}{2a"_1}{\left(\frac{a"_2}{\lambda_2}\right)\!}^2,\\ y""&=y"+ \frac{a"_2}{\lambda_2}, \end{aligned}\right.

получим, где a""_1=a"_1

\lambda_2\cdot(y"")^2+2\cdot a""_1\cdot x""=0,

Если a"_1=0 , то уравнение (3.44) приводится к виду, где a""_0=-\lambda_2{\left(\frac{a"_2}{\lambda_2} \right)\!}^2+a"_0 ,

\lambda_2\cdot(y"")^2+a""_0,

\left\{\begin{aligned}x""&=x",\\y""&=y"+\frac{a"_2}{\lambda_2}.\end{aligned}\right.

Замены переменных (3.42), (3.45), (3.48) соответствуют параллельному переносу системы координат Ox"y" (см. пункт 1"a" замечаний 2.3).

Таким образом, при помощи параллельного переноса системы координат Ox"y" получаем новую систему координат O""x""y"" , в которой уравнение линии второго порядка принимает вид (3.43), или (3.46), или (3.47). Эти уравнения являются приведенными (вида (III),(II) или (I) соответственно).

Основная теорема 3.3 о приведении уравнения алгебраической линии второго порядка к каноническому виду доказана.

Замечания 3.8

1. Система координат, в которой уравнение алгебраической линии второго порядка имеет канонический вид, называется канонической. Каноническая система координат определяется неоднозначно. Например, изменяя направление оси ординат на противоположное, снова получаем каноническую систему координат, так как замена переменной y на (-y) не изменяет уравнений (1)–(9). Поэтому ориентация канонической системы координат не имеет принципиального значения, ее всегда можно сделать правой, изменив при необходимости направление оси ординат.

2. Ранее показано, что преобразования прямоугольных систем координат на плоскости сводятся к одному из преобразований (2.9) или (2.10):

\begin{cases} x=x_0+x"\cdot\cos\varphi-y"\cdot\sin\varphi,\\ y=y_0+x"\cdot\sin\varphi+y"\cdot\cos\varphi, \end{cases}\quad \begin{cases} x=x_0+x"\cdot\cos\varphi+y"\cdot\sin\varphi,\\ y=y_0+x"\cdot\sin\varphi-y"\cdot\cos\varphi.\end{cases}

Поэтому задача приведения уравнения линии второго порядка к каноническому виду сводится к нахождению начала O"(x_0,y_0) канонической системы координат O"x"y" и угла \varphi наклона ее оси абсцисс O"x" к оси абсцисс Ox исходной системы координат Oxy .

3. В случаях (3),(5),(7),(8),(9) линии называются распадающимися, поскольку соответствующие им многочлены второй степени разлагаются в произведение многочленов первой степени.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

1. Окружность. 2Окружностью называется геометрическое место точек, равноудаленных от одной фиксированной точки, называемой центром окружности. Расстояние от произвольной точки окружности до его центра называется радиусом окружности .

g Если центр окружности находится в точке , а радиус равен R , то уравнение окружности имеет вид:

4Обозначим через (рис. 3.5) произвольную точку окружности. Используя формулу расстояния между двумя токами (3.1) и определение окружности, получим: . Возводя полученное равенство в квадрат, мы получим формулу (3.13).3

2. Эллипс. 2 Эллипсом называется геометрическое место точек, сумма расстояний которых до двух фиксированных точек, называемых фокусами, есть величина постоянная.

Для того, чтобы вывести каноническое (простейшее) уравнение эллипса, примем за ось Ox прямую, соединяющую фокусы F 1 и F 2 . Пусть при этом фокусы будут симметричны относительно начала координат, т.е. будут иметь координаты: и . Здесь через 2с обозначено расстояние между фокусами. Обозначим через x и y координаты произвольной точки М эллипса (рис 3.6). Тогда по определению эллипса, сумма расстояний от точки М до точек F 1 и F а ).

Уравнение (3.14) является уравнением эллипса. Упростим данное уравнение, избавившись от квадратных корней. Для этого перенесем один из радикалов в правую часть равенства (3.14) и возведем обе части полученного равенства в квадрат:

Возводя последнее равенство в квадрат, получим

Разделим обе части на :

.

Так как сумма расстояний от произвольной точки эллипса до его фокусов больше расстояния между фокусами, т.е. 2а > 2c , то .

Обозначим через b 2 . Тогда простейшее (каноническое) уравнение эллипса будет иметь вид:

где положено

Оси координат являются осями симметрии эллипса, заданного уравнением (3.15). Действительно, если точка с текущими координатами (x ; y ) принадлежит эллипсу, то и точки при любом сочетании знаков принадлежат эллипсу.

2Ось симметрии эллипса, на которой расположены фокусы, называется фокальной осью. Точки пересечения эллипса с его осями симметрии называются вершинами эллипса. Подставляя x = 0 или y = 0 в уравнение эллипса найдем координаты вершин:

А 1 (a ; 0), А 2 (– a ; 0), B 1 (0; b ), B 2 (0; – b ).

2Отрезки А 1 А 2 и B 1 B 2 , соединяющие противоположные вершины эллипса, а также их длины 2a и 2b , называют соответственно большой и малой осями эллипса. Числа a и b , называют соответственно большой и малой полуосями эллипса.


2Эксцентриситетом эллипса называется отношение расстояния между фокусами (2с ) к большой оси (2a ), т.е.

Так как а и с положительны, причем c < a , то эксцентриситет эллипса больше нуля, но меньше единицы ().

Если фокусы эллипса расположены на оси Oy (рис.3.7), то уравнение эллипса останется таким же, как и в предыдущем случае:

Однако в этом случае полуось b будет больше, чем a (эллипс вытянут вдоль оси Oy ). Формулы (3.16) и (3.17) претерпят следующие изменения соответственно:

3. Гипербола. 2Гиперболой называется геометрическое место точек, модуль разности расстояний которых до двух фиксированных точек, называемых фокусами, есть величина постоянная.

Выводится каноническое уравнение гиперболы аналогично тому как это делалось в случае эллипса. За ось Ox принимаем прямую, соединяющую фокусы F 1 и F 2 (рис.3.8). Пусть при этом фокусы будут симметричны относительно начала координат, т.е. будут иметь координаты: и . Через 2с , как и прежде, обозначено расстояние между фокусами.

Обозначим через (x ; y М гиперболы. Тогда по определению гиперболы, разность расстояний от точки М до точек F 1 и F 2 равно константе (обозначим эту константу через 2а ).

Производя преобразования аналогичные тем, которые применялись при упрощении уравнения эллипса, мы придем к каноническому уравнению гиперболы:

, (3.21)
где положено

Оси координат являются осями симметрии гиперболы.

2Ось симметрии гиперболы, на которой расположены фокусы, называется фокальной осью. Точки пересечения гиперболы с ее осями симметрии называются вершинами гиперболы. С осью Oy гипербола не пересекается, т.к. уравнение не имеет решения. Подставляя y = 0 в уравнение (3.21) найдем координаты вершин гиперболы: А 1 (a ; 0), А 2 (– a ; 0).

2Отрезок 2a , длина которого равна расстоянию между вершинами гиперболы, называют действительной осью гиперболы. Отрезок 2b называют мнимой осью гиперболы. Числа a и b , называют соответственно действительной и мнимой полуосями гиперболы.

Можно доказать, что прямые линии

являются асимптотами гиперболы, т.е. такими прямыми, к которым неограниченно приближаются точки гиперболы при их неограниченном удалении от начала координат ().

2Эксцентриситетом гиперболы называется отношение расстояния между фокусами (2с ) к действительной оси (2a ), т.е., как и в случае эллипса

Однако в отличии от эллипса эксцентриситет гиперболы больше единицы.

Если фокусы гиперболы расположены на оси Oy , то в левой части уравнения гиперболы изменятся знаки на противоположные:

. (3.25)

В этом случае полуось b будет действительной, а полуось a – мнимой. Ветви гиперболы будут симметричны относительно оси Oy (рис 3.9). Формулы (3.22) и (3.23) не изменятся, формула (3.24) будет выглядеть следующим образом:

4. Парабола. Параболой называется геометрическое место точек, равноудаленных от данной точки, называемой фокусом и от данной прямой, называемой директрисой (предполагается, что фокус не лежит на директрисе).

Для того, чтобы составить простейшее уравнение параболы примем за ось Ox прямую, проходящую через ее фокус перпендикулярно директрисе, и направленную от директрисы к фокусу. За начало координат примем середину отрезка O от фокуса F до точки А пересечения оси Ox с директрисой. Длина отрезка AF обозначается через p и называется параметром параболы.

В данной системе координат координаты точек А и F будут, соответственно, , . Уравнение директрисы параболы будет . Обозначим через (x ; y ) координаты произвольной точки М параболы (рис. 3.10). Тогда по определению параболы:

. (3.27)

Возведем обе части равенства (3.27) в квадрат:

, или

, откуда

Лекция 8. Линии второго порядка.

План лекции

8.1. Окружность, исследование уравнения окружности.

8.2. Вывод канонического уравнения эллипса.

8.3. Гипербола и парабола, их канонические уравнения.

8.4. Линии второго порядка. Приведение кривых второго порядка к каноническому виду.

8.5. Полярное уравнение кривой второго порядка.

Окружностью называется множество всех точек плоскости, равноудаленных от данной точки (центра окружности) на расстояние, равное радиусу окружности.

Рисунок 8.1.Окружность.

Пусть С (а,в ) – центр окружности, r – радиус окружности, M (x,y ) – произвольная точка окружности (Рисунок 8.1). По определению окружности . Выразим это равенство в координатах: . Возведем обе части в квадрат:

. (8.1)

Таким образом, координаты любой точки, лежащей на окружности, удовлетворяют уравнению (8.1). Покажем, что координаты точки, не лежащей на окружности, не удовлетворяют уравнению (8.1).

Действительно, если точка М - внутри окружности, то расстояние , т.е. , а если точка M - вне окружности, то , т.е. . Следовательно, уравнению (8.1) удовлетворяют координаты всех точек, лежащих на окружности, и не удовлетворяют координаты точек, не лежащих на окружности. Поэтому уравнение (81) и есть уравнение окружности.

Если в уравнении (8.1) раскрыть скобки, то получим уравнение

где , , .

Если , то уравнение (8.2) определяет окружность.

Если , то уравнение (8.2) определяет точку .

Если , то уравнение (8.2) не имеет геометрического смысла. В этом случае говорят о мнимой окружности.

Рисунок 8.2.Окружность, имеющая

каноническое уравнение

Уравнение (8.1) можно упростить, если поместить начало новой системы координат в центр окружности (Рисунок 8.2). Тогда ее уравнение будет иметь вид:

Это уравнение называется каноническим уравнением окружности , т.е. уравнением самого простого вида.

Эллипсом называется множество всех точек плоскости, сумма расстояний которых до двух данных точек F 1 и F 2 , называемых фокусами, есть величина постоянная (ее обозначают ) и большая, чем расстояние между фокусами.

центром эллипса , т.к. относительно этой точки эллипс симметричен.

Длина |F 1 F 2 | называется фокусным расстоянием , обозначим ее , а половина этого расстояния называется полуфокусным расстоянием , оно равно с .

Примем центр эллипса за начало координат, за ось абсцисс примем прямую, проходящую через фокусы (Рисунок 8.3).

Рисунок 8.3. Эллипс

Тогда координаты фокусов будут F 1 (-c;0), F 2 (c;0). Всякий отрезок, соединяющий две точки эллипса, если он проходит через центр, называется диаметром эллипса . Наибольший диаметр проходит через фокусы, этот диаметр A 1 A 2 называется большой осью эллипса . Длина большой оси эллипса |A 1 A 2 |=2a . Действительно, по определению эллипса |F 1 A 2 |+|F 2 A 2 |=2a , но |F 1 A 2 |=|OA 2 |+c , |F 2 A 2 |=|OA 2 |-c . Тогда получаем 2|OA 2 |=2a, или |OA 2 |=a . Аналогично |A 1 O|=a , следовательно, |A 1 A 2 |=2a . Число а называется большой полуосью . Наименьший диаметр эллипса перпендикулярен наибольшему, его называют малой осью эллипса и обозначают через 2b , так что |B 1 B 2 |=2b . Число b называется малой полуосью . Концы осей, т.е. точки A 1 ,A 2 ,B 1 ,B 2 называются вершинами эллипса. Основное свойство эллипса применимо и для вершин В 1 и В 2 . Например, для вершины В 2 получим |F 1 B 2 |+|F 2 B 2 |=2a , а т.к. |F 1 B 2 |=|F 2 B 2 | , то 2|F 2 B 2 |=2a , или |F 2 B 2 |=a . Тогда из прямоугольного ∆OF 2 B 2 получаем важное соотношение:

(8.4)

Форма эллипса при заданном а зависит только от расстояния между фокусами, т.е. от с . При сближении фокусов и при совпадении их с началом координат эллипс постепенно обратится в окружность. Наоборот, если фокусы отодвигаются от начала координат, эллипс постепенно сплющивается и вырождается в прямолинейный отрезок A 1 A 2 . Степень сжатия эллипса определяется его эксцентриситетом , который определяется дробью:

Для эллипса эксцентриситет может изменяться от 0 до 1, причем для окружности , для эллипса, выродившегося в прямолинейный отрезок, .

Для получения канонического уравнения эллипса возьмем произвольную точку эллипса М(x,y). Тогда по определению |MF 1 |+|MF 2 |=2a . Выразим это равенство в координатах:

Для упрощения уравнения (8.6) придется дважды его возводить в квадрат и приводить подобные члены. В результате будет получено уравнение

или после деления на –

Построение эллипса, согласно его определению, можно осуществить посредством нити длиной , закрепленной концами в фокусах. Зацепив нить острием карандаша, и двигая его так, чтобы нить всё время была в натянутом состоянии, мы заставим острие вычертить эллипс.

Гиперболой называется множество всех точек плоскости, абсолютная величина разности расстояний которых до двух данных точек и , называемых фокусами, есть величина постоянная (её обозначают ) и меньшая расстояния между фокусами ().

Середина расстояния между фокусами называется центром гиперболы , так как относительно этой точки гипербола симметрична. Длина - называется фокусным расстоянием , а половина этого расстояния полуфокусным расстоянием . Удобно центр гиперболы принять за начало координат, а за ось абсцисс принять прямую, проходящую через фокусы (Рисунок 8.4).

Всякий отрезок, соединяющий две точки гиперболы и проходящий через центр, называется диаметром гиперболы . Наименьший диаметр лежит на оси абсцисс; этот диаметр называется действительной осью гиперболы, причем . Действительно по определению гиперболы , но , , тогда , или . Аналогично , следовательно, .

Число называется действительной полуосью , точки и называются вершинами гиперболы . Отношение называется эксцентриситетом гиперболы , причем для гиперболы .

Рисунок 8.4. Гипербола

Пусть - произвольная точка гиперболы. Тогда по определению , или в координатной форме

Уравнение (8.8) в результате преобразований, аналогичных проводимым при выводе уравнения эллипса, может быть сведено к виду:

.

Обозначая , получаем каноническое уравнение гиперболы :

Прямые являются асимптотами гиперболы . Это прямые, к которым гипербола приближается в бесконечности, но не пересекает их. С геометрической точки зрения - ордината асимптоты, восстановленной из вершины гиперболы. Для построения асимптот гиперболы целесообразно предварительно построить прямоугольник со сторонами и , параллельными координатным осям и с центром в начале координат (такой прямоугольник называется основным прямоугольником гиперболы). Точки и определяют мнимую ось гиперболы .



Если в уравнении (8.9) , то гипербола называется равнобочной . Ее асимптоты образуют прямой угол. Если за оси принять асимптоты, то уравнение примет вид . Таким образом, равнобочная гипербола является графиком обратной пропорциональности.

Заметим, что уравнение

(8.10)

тоже определяет гиперболу, у которой действительная ось расположена на оси , а мнимая ось – на оси .

Параболой называется множество всех точек плоскости, равноудаленных от данной точки (называемой фокусом параболы) и от данной прямой (называемой директрисой параболы).

Для вывода канонического уравнения параболы проведем ось прямоугольной системы координат через фокус перпендикулярно директрисе, начало координат поместим на равных расстояниях от фокуса и директрисы (Рисунок 8.5). Расстояние от фокуса до директрисы обозначим через (оно называется параметром параболы). Тогда , а директриса задается уравнением . Пусть - произвольная точка параболы. Опустим перпендикуляр на директрису . Тогда по определению . Выразим это условие в координатах:

.

Рисунок 8.5. Парабола.

Возводя в квадрат и приводя подобные, получаем каноническое уравнение параболы :

Вершиной параболы называется точка пересечения параболы с ее осью симметрии. Ось симметрии параболы называется осью параболы. Парабола, определяемая уравнением (8.11), имеет ось, совпадающую с осью .

Заметим, что уравнение определяет параболу, симметричную относительно оси .

Между эллипсом, гиперболой и параболой имеется близкое родство. Это объясняется тем, что все они - линии второго порядка. Все эти линии могут быть получены при пересечении прямого кругового конуса с плоскостью, поворачивающейся вокруг оси, выбранной, например, перпендикулярно к оси конуса (Рисунок 8.6). Пока наклон мал, в сечении получается эллипс. При увеличении наклона эллипс удлиняется, его эксцентриситет растет. Когда плоскость наклонена к оси конуса так же, как образующие, в сечении получается парабола. Наконец, когда плоскость будет пересекать обе половины конуса, в сечении будет гипербола. По этой причине эллипс, гиперболу и параболу иногда называют коническими сечениями.

Рисунок 8.6. Родство кривых второго порядка.

Родство между указанными линиями обусловлено тем, что все они задаются уравнением второй степени, а поэтому и носят общее название линий (или кривых ) второго порядка .

Общим уравнением линий второго порядка называется уравнение вида

. (8.12)

Путем преобразования координат это уравнение можно привести к каноническому виду. Осуществим поворот осей координат на угол по формулам:

(8.13)

Угол выберем таким, чтобы получилось уравнение, не содержащее произведение координат. Для этого подставляем (8.13) в (8.12) и приравниваем коэффициент при к . В результате получаем уравнение для определения угла поворота:

. (8.15)

Формула (8.15) определяет 4 возможных значения для любое из которых позволяет привести уравнение (8.12) к виду:

(8.16)

Если , то уравнение (8.16) может быть приведено к виду:

которое с помощью параллельного переноса начала координат

сводится к каноническому виду.

Если , т.е. или , то уравнение (8.16) может быть приведено к виду.

Малый дискриминант 5 (§ 66) для эллипса положителен (см. пример 1 § 66), для гиперболы отрицателен, для параболы равен нулю.

Доказательство. Эллипс представляется уравнением . У этого уравнения малый дискриминант При преобразовании координат сохраняет свою величину, а при умножении обеих частей уравнения на какое-либо число дискриминант умножается на (§ 66, замечание). Следовательно, дискриминант эллипса положителен в любой системе координат. В случае гиперболы и в случае параболы доказательство аналогично.

Согласно с этим различают три типа линий второго порядка (и уравнений второй степени):

1. Эллиптический тип, характеризующийся условием

К нему относятся, кроме действительного эллипса, также мнимый эллипс (§ 58, пример 5) и пара мнимых прямых, пересекающихся в действительной точке (§ 58, пример 4).

2. Гиперболический тип, характеризующийся условием

К нему относится, кроме гиперболы, пара действительных пересекающихся прямых (§ 58, пример 1).

3. Параболический тип, характеризующийся условием

К нему относится, кроме параболы, пара параллельных (действительных или мнимых) прямых (они могут совпадать).

Пример 1. Уравнение

принадлежит к параболическому типу, так как

Поскольку большой дискриминант

не равен нулю, то уравнение (1) представляет нераспадающуюся линию, т. е. параболу (ср. §§ 61-62, пример 2).

Пример 2. Уравнение

принадлежит к гиперболическому типу, так как

поскольку

то уравнение (2) представляет пару пересекающихся прямых. Их уравнения можно найти по способу § 65.

Пример 3. Уравнение

принадлежит к эллиптическому типу, так как

Поскольку

то линия не распадается и, значит, является эллипсом.

Замечание. Однотипные линии геометрически связаны так: пара пересекающихся мнимых прямых (т. е. одна действительная точка) есть предельный случай эллипса, «стягивающегося в точку» (рис. 88); пара пересекающихся действительных прямых - предельный случай гиперболы, приближающейся к своим асимптотам (рис. 89); пара параллельных прямых - предельный случай параболы, у которой ось и одна пара точек симметричных относительно оси (рис. 90), неподвижны, а вершина удаляется в бесконечность.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама