THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Мультипликативная модель.

Пример 2. Выручка от реализации продукции (объем продукции - V) может быть выражена как произведение комплекса факторов: численность персонала (Чп), доля рабочих в общей численности персонала (dр); среднегодовая выработка одного рабочего (Вр)

V = Чп * dр * Вр


Смешанная (комбинированная) модель представляет собой сочетание в различных комбинациях предыдущих моделей: Пример 4. Рентабельность предприятия (Р) определяется как частное от деления балансовой прибыли (Пбал) на среднегодовую стоимость основных (ОС) и нормируемых оборотных (ОБ) средств:

Ø Преобразования детерминированных факторных моделей

Для моделирования различных ситуаций в факторном анализе применяются специальные методы преобразования типовых факторных моделей. Все они основаны на приеме детализации . Детализация – разложение более общих факторов на менее общие. Детализация позволяет на основе знания экономической теории упорядочить анализ, содействует комплексному рассмотрению факторов, указывает значимость каждого из них.

Развитие детерминированной факторной системы достигается, как правило, за счет детализации комплексных факторов. Элементные (простые) факторы не раскладываются.

Пример 1. Факторы

Большая часть традиционных (специальных) приемов детерминированного факторного анализа основана на элиминировании . Прием элиминирования используется для определения изолированного фактора путем исключения воздействия всех остальных. Исходной посылкой данного приема является следующая: Все факторы изменяются независимо друг от друга: сначала изменяется один, а все другие остаются без изменения, затем изменяются два, три и т.д. при неизменности остальных. Прием элиминирования является в свою очередь основой для других приемов детерминированного факторного анализа, цепных подстановок, индексных, абсолютных и относительных (процентных) разниц.

Ø Прием цепных подстановок

Цель.

Область применения . Все виды детерминированных факторных моделей.

Ограничение на использование.

Порядок применения . Рассчитывается ряд скорректированных значений результативного показателя путем последовательной замены базисных значений факторов на фактические.

Расчет влияния факторов целесообразно проводить в аналитической таблице.

Исходная модель: П = А х В х С х Д

А

Ø Прием абсолютных разниц

Цель. Измерение изолированного влияния факторов на изменение результативного показателя.

Область применения. Детерминированные факторные модели; в том числе:

1. Мультипликативные

2. Смешанные (комбинированные)

типа Y = (A-B)C и Y = A(B-C)

Ограничения на использование. Факторы в модели должны быть последовательно расположены: от количественных к качественным, от более общих к более частным.

Порядок применения. Величина влияния отдельного фактора на изменение результативного показателя определяется путем умножения абсолютного прироста исследуемого фактора на базисную (плановую) величину факторов, которые в модели находятся справа от него, и на фактическую величину факторов, расположенных слева.

В случае исходной мультипликативной модели П = А х В х С х Д получим: изменение результативного показателя

1. За счет фактора А:

DП А = (А 1 – А 0) х В 0 х С 0 х Д 0

2. За счет фактора В:

DП В = А 1 х (В 1 - В 0) х С 0 х Д 0

3. За счет фактора С:

DП С = А 1 х В 1 х (С 1 - С 0) х Д 0

4. За счет фактора Д:

DП Д = А 1 х В 1 х С 1 х (Д 1 - Д 0)

5. Общее изменение (отклонение) результативного показателя (баланс отклонений)

D П = D П а + D П в + D П с + D П д

Баланс отклонений должен соблюдаться (так же как в приеме цепных подстановок).

Ø Прием относительных (процентных) разниц

Цель. Измерение изолированного влияния факторов на изменение результативного показателя.

Область применения . Детерминированные факторные модели, включая:

1) мультипликативные;

2) комбинированные типа Y = (А – В) С,

целесообразно применять, когда известны определенные ранее относительные отклонения факторных показателей в процентах или коэффициентах.

Требования к последовательности расположения факторов в модели отсутствуют.

Исходная посылка . Результативный признак изменяется пропорционально изменению факторного признака.

Порядок применения . Величина влияния отдельного фактора на изменение результативного показателя определяется путем умножения базисного (планового)значения результативного показателя на относительный прирост факторного признака.



Исходная модель:

Изменение результативного показателя:

1. За счет фактора А:


За счет фактора В:

2. За счет фактора С:


Баланс отклонений . Общее отклонение результативного показателя складывается из отклонений по факторам:

D Y = Y 1 - Y 0 = D Y A + D Y B + D Y C

Ø Индексный метод

Цель. Измерение относительного и абсолютного изменения экономических показателей и влияния на него различных факторов.

Область применения .

1. Анализ динамики показателей, в том числе агрегированных (сложенных).

2. Детерминированные факторные модели; включая мультипликативные и кратные.

Порядок применения . Абсолютное и относительное изменение экономических явлений.

Агрегатный индекс стоимости продукции (товарооборота)


I pq – характеризует относительное изменение стоимости продукции в действующих ценах (ценах соответствующего периода)

Разность числителя и знаменателя (åp 1 q 1 - åp o q 0) – характеризует абсолютное изменение стоимости продукции в отчетном периоде по сравнению с базисным.

Агрегатный индекс цен:


I p – характеризует относительное изменение средней цены на совокупность видов продукции (товаров).

Разность числителя и знаменателя (åp 1 q 1 - åp o q 1) – характеризует абсолютное изменение стоимости продукции вследствие изменения цен на отдельные ее виды.

Агрегатный индекс физического объема продукции:

характеризует относительное изменение объема продукции в фиксированных (сопоставимых) ценах.

åq 1 p 0 - åq 0 p 0 – разность числителя и знаменателя характеризует абсолютное изменение стоимости продукции вследствие изменения физических объемов различных ее видов.

На основе индексных моделей проводится факторный анализ.

Так, классической аналитической задачей является определение влияния на стоимость продукции фактора количества (физического объема) и цен:

В абсолютных величинах

å p 1 q 1 - å p 0 q 0 = (å q 1 p 0 - å q 0 p 0) + (å p 1 q 1 - å p 0 q 1).

Аналогично, используя индексную модель, можно определить влияние на полную себестоимость продукции (zq) факторов ее физического объема (q) и себестоимости единицы продукции различных видов (z)

В абсолютном выражении

å z 1 q 1 - å z 0 q 0 = (å q 1 z 0 - å q 0 z 0) + (å z 1 q 1 - å z 0 q 1)

Ø Интегральный метод

Цель. Измерение изолированного влияния факторов на изменение результативного показателя.

Область применения . Детерминированные факторные модели, в том числе

· Мультипликативные

· Кратные

· Смешанные типа


Преимущества. По сравнению с приемами, основанными на элиминировании, дает более точные результаты, поскольку дополнительный прирост результативного показателя за счет взаимодействия факторов распределяется пропорционально их изолированному воздействию на результативный показатель.

Порядок применения . Величина влияния отдельного фактора на изменение результативного показателя определяется на основе формул для разных факторных моделей, выведенных с применением дифференцирования и интегрирования в факторном анализе.


Изменение результативного показателя за счет фактора х

D¦ х = D ху 0 +DхDу / 2

за счет фактора у

D¦ у = D ух 0 +DуDх / 2

Общее изменение результативного показателя: D¦ = D¦ х + D¦ у

Баланс отклонений

D¦ = ¦ 1 - ¦ 0 = D¦ х +D¦ у

Простейший подход к моделированию сезонных колебаний – это расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или .
Общий вид мультипликативной модели выглядит так:

Где T - трендовая компонента, S - сезонная компонента и E - случайная компонента.
Назначение . С помощью данного сервиса производится построение мультипликативной модели временного ряда.

Алгоритм построения мультипликативной модели

Построение мультипликативной моделей сводится к расчету значений T , S и E для каждого уровня ряда.
Процесс построения модели включает в себя следующие шаги.
  1. Выравнивание исходного ряда методом скользящей средней.
  2. Расчет значений сезонной компоненты S .
  3. Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных (T x E).
  4. Аналитическое выравнивание уровней (T x E) с использованием полученного уравнения тренда.
  5. Расчет полученных по модели значений (T x E).
  6. Расчет абсолютных и/или относительных ошибок. Если полученные значения ошибок не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок E для анализа взаимосвязи исходного ряда и других временных рядов.

Пример . Построить аддитивную и мультипликативную модель временного ряда, характеризующую зависимость уровней ряда от времени.
Решение . Построение мультипликативной модели временного ряда .
Общий вид мультипликативной модели следующий:
Y = T x S x E
Эта модель предполагает, что каждый уровень временного ряда может быть представлен как сумма трендовой (T), сезонной (S) и случайной (E) компонент.
Рассчитаем компоненты мультипликативной модели временного ряда.
Шаг 1 . Проведем выравнивание исходных уровней ряда методом скользящей средней. Для этого:
1.1. Найдем скользящие средние (гр. 3 таблицы). Полученные таким образом выровненные значения уже не содержат сезонной компоненты.
1.2. Приведем эти значения в соответствие с фактическими моментами времени, для чего найдем средние значения из двух последовательных скользящих средних – центрированные скользящие средние (гр. 4 табл.).

t y t Скользящая средняя Центрированная скользящая средняя Оценка сезонной компоненты
1 898 - - -
2 794 1183.25 - -
3 1441 1200.5 1191.88 1.21
4 1600 1313.5 1257 1.27
5 967 1317.75 1315.63 0.74
6 1246 1270.75 1294.25 0.96
7 1458 1251.75 1261.25 1.16
8 1412 1205.5 1228.63 1.15
9 891 1162.75 1184.13 0.75
10 1061 1218.5 1190.63 0.89
11 1287 - - -
12 1635 - - -
Шаг 2 . Найдем оценки сезонной компоненты как частное от деления фактических уровней ряда на центрированные скользящие средние (гр. 5 табл.). Эти оценки используются для расчета сезонной компоненты S. Для этого найдем средние за каждый период оценки сезонной компоненты S j . Сезонные воздействия за период взаимопогашаются. В мультипликативной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна числу периодов в цикле. В нашем случае число периодов одного цикла равно 4.
Показатели 1 2 3 4
1 - - 1.21 1.27
2 0.74 0.96 1.16 1.15
3 0.75 0.89 - -
Всего за период 1.49 1.85 2.37 2.42
Средняя оценка сезонной компоненты 0.74 0.93 1.18 1.21
Скорректированная сезонная компонента, S i 0.73 0.91 1.16 1.19
Для данной модели имеем:
0.744 + 0.927 + 1.183 + 1.211 = 4.064
Корректирующий коэффициент: k=4/4.064 = 0.984
Рассчитываем скорректированные значения сезонной компоненты S i и заносим полученные данные в таблицу.
Шаг 3 . Разделим каждый уровень исходного ряда на соответствующие значения сезонной компоненты. В результате получим величины T x E = Y/S (гр. 4 табл.), которые содержат только тенденцию и случайную компоненту.
Находим параметры уравнения методом наименьших квадратов .
Система уравнений МНК:
a 0 n + a 1 ∑t = ∑y
a 0 ∑t + a 1 ∑t 2 = ∑y t
Для наших данных система уравнений имеет вид:
12a 0 + 78a 1 = 14659.84
78a 0 + 650a 1 = 96308.75
Из первого уравнения выражаем а 0 и подставим во второе уравнение
Получаем a 1 = 7.13, a 0 = 1175.3
Среднее значения
t y t 2 y 2 t y y(t) (y-y cp) 2 (y-y(t)) 2
1 1226.81 1 1505062.02 1226.81 1182.43 26.59 1969.62
2 870.35 4 757510.32 1740.7 1189.56 123413.31 101895.13
3 1238.16 9 1533048.66 3714.49 1196.69 272.59 1719.84
4 1342.37 16 1801951.56 5369.47 1203.82 14572.09 19194.4
5 1321.07 25 1745238.05 6605.37 1210.96 9884.65 12126.19
6 1365.81 36 1865450.09 8194.89 1218.09 20782.63 21823.45
7 1252.77 49 1569433.89 8769.39 1225.22 968.3 759.1
8 1184.64 64 1403371.14 9477.12 1232.35 1369.99 2276.31
9 1217.25 81 1481689.26 10955.22 1239.48 19.42 494.41
10 1163.03 100 1352627.82 11630.25 1246.61 3437.21 6987
11 1105.84 121 1222883.47 12164.25 1253.75 13412.51 21875.75
12 1371.73 144 1881649.21 16460.79 1260.88 22523.77 12288.93
78 14659.84 650 18119915.49 96308.75 14659.84 210683.05 203410.13
Шаг 4 . Определим компоненту T данной модели. Для этого проведем аналитическое выравнивание ряда (T + E) с помощью линейного тренда. Результаты аналитического выравнивания следующие:
T = 1175.298 + 7.132t
Подставляя в это уравнение значения t = 1,...,12, найдем уровни T для каждого момента времени (гр. 5 табл.).
t y t S i y t /S i T TxS i E = y t / (T x S i) (y t - T*S) 2
1 898 0.73 1226.81 1182.43 865.51 1.04 1055.31
2 794 0.91 870.35 1189.56 1085.21 0.73 84801.95
3 1441 1.16 1238.16 1196.69 1392.74 1.03 2329.49
4 1600 1.19 1342.37 1203.82 1434.87 1.12 27269.14
5 967 0.73 1321.07 1210.96 886.4 1.09 6497.14
6 1246 0.91 1365.81 1218.09 1111.23 1.12 18162.51
7 1458 1.16 1252.77 1225.22 1425.93 1.02 1028.18
8 1412 1.19 1184.64 1232.35 1468.87 0.96 3233.92
9 891 0.73 1217.25 1239.48 907.28 0.98 264.9
10 1061 0.91 1163.03 1246.61 1137.26 0.93 5814.91
11 1287 1.16 1105.84 1253.75 1459.13 0.88 29630.23
12 1635 1.19 1371.73 1260.88 1502.87 1.09 17458.67
Шаг 5 . Найдем уровни ряда, умножив значения T на соответствующие значения сезонной компоненты (гр. 6 табл.).
Расчет ошибки в мультипликативной модели производится по формуле:
E = Y/(T * S) = 12
Для сравнения мультипликативной модели и других моделей временного ряда можно использовать сумму квадратов абсолютных ошибок:
Среднее значения
t y (y-y cp) 2
1 898 106384.69
2 794 185043.36
3 1441 47016.69
4 1600 141250.69
5 967 66134.69
6 1246 476.69
7 1458 54678.03
8 1412 35281.36
9 891 111000.03
10 1061 26623.36
11 1287 3948.03
12 1635 168784.03
78 14690 946621.67


Следовательно, можно сказать, что мультипликативная модель объясняет 79% общей вариации уровней временного ряда.
Проверка адекватности модели данным наблюдения.

где m - количество факторов в уравнении тренда (m=1).
Fkp = 4.96
Поскольку F> Fkp, то уравнение статистически значимо
Шаг 6 . Прогнозирование по мультипликативной модели. Прогнозное значение F t уровня временного ряда в мультипликативной модели есть сумма трендовой и сезонной компонент. Для определения трендовой компоненты воспользуемся уравнением тренда:T = 1175.298 + 7.132t
Получим
T 13 = 1175.298 + 7.132*13 = 1268.008
Значение сезонного компонента за соответствующий период равно: S 1 = 0.732
Таким образом, F 13 = T 13 + S 1 = 1268.008 + 0.732 = 1268.74
T 14 = 1175.298 + 7.132*14 = 1275.14
Значение сезонного компонента за соответствующий период равно: S 2 = 0.912
Таким образом, F 14 = T 14 + S 2 = 1275.14 + 0.912 = 1276.052
T 15 = 1175.298 + 7.132*15 = 1282.271
Значение сезонного компонента за соответствующий период равно: S 3 = 1.164
Таким образом, F 15 = T 15 + S 3 = 1282.271 + 1.164 = 1283.435
T 16 = 1175.298 + 7.132*16 = 1289.403
Значение сезонного компонента за соответствующий период равно: S 4 = 1.192
Таким образом, F 16 = T 16 + S 4 = 1289.403 + 1.192 = 1290.595

Они используются в тех случаях, когда результативный показатель представляет собой алгебраическую сумму нескольких факторных показателей.

2. Мультипликативные модели

Y=
.

Этот тип моделей применяется тогда, когда результативный показатель представляет собой произведение нескольких факторов.

3. Кратные модели

Y=.

Они применяются тогда, когда результативный показатель получают делением одного факторного показатели на величину другого.

4. Смешанные (комбинированные) модели - это сочетание в различных комбинациях предыдущих моделей:

Y=; Y=; Y=(a+b)c .

Преобразование факторных систем

1. Преобразование мультипликативных факторных систем осуществляется путем последовательного расчленения факторов исходной системы на факторы-сомножители .

Например, при исследовании процесса формирования объема производства продукции (см.рис.6.1) можно применять такие детерминированные модели, как

ВП=КРГВ; ВП=КРДДВ, ВП=КРДПСВ.

Эти модели отражают процесс детализации исходной факторной системы мультипликативного вида и расширения ее за счет расчленения на сомножители комплексных факторов. Степень детализации и расширения модели зависит от цели исследования, а также от возможностей детализации и формализации показателей в пределах установленных правил.

2. Аналогичным образом осуществляется моделирование аддитивных факторных систем за счет расчленения одного из факторных показателей на его составные элементы-слагаемые .

Пример. Как известно, объем реализации продукции

VРП = VВП – VИ,

где VВП - объем производства;

VИ – объем внутрихозяйственного использования продукции.

В сельскохозяйственном предприятии зернопродукция использовалась в качестве семян (С) и кормов (К) Тогда приведенную исходную модель можно записать следующим образом: VП = VВП - (С + К).

3. К классу кратных моделей применяют следующие способы их преобразования:

    удлинения;

    формального разложения;

    расширения;

    сокращения.

Первый метод предусматривает удлинение числителя исходной модели путем замены одного или нескольких факторов на сумму однородных показателей .

Например, себестоимость единицы продукции можно представить в качестве функции двух факторов: изменение суммы затрат (3) и объема выпуска продукции (VВП). Исходная модель этой факторной системы будет иметь вид

С=.

Если общую сумму затрат (3) заменить отдельными их элементами, такими, как оплата труда (ОТ), сырье и материалы (СМ), амортизация основных средств (А), накладные затраты (НЗ) и др., то детерминированная факторная модель будет иметь вид аддитивной модели с новым набором факторов

С=+++=X+ X+ X+ X,

где X– трудоемкость продукции; X– материалоемкость продукции; X– фондоемкость продукции; X– уровень накладных затрат

Способ формального разложения факторной системы предусматривает удлинение знаменателя исходной факторной модели путем замены одного или нескольких факторов на сумму или произведение однородных показателей .

Если b=l+m+n+р , то

Y=
.

В результате получили конечную модель того же вида, что и исходной факторной системы (кратную модель). На практике такое разложение встречается довольно часто. Например, при анализе показателя рентабельности производства (Р):

Р=,

где /7 - сумма прибыли от реализации продукции;

3 - сумма затрат на производство и реализацию продукции.

Если сумму затрат заменить на отдельные ее элементы, конечная модель в результате преобразования приобретет следующий вид:

Р=
.

Себестоимость одного тонно-километра (С
) зависит от суммы затрат на содержание и эксплуатацию автомобиля (3) и от его среднегодовой выработки (ГВ). Исходная модель этой системы будет иметь вид

С
=.

Учитывая, что среднегодовая выработка машины в свою очередь зависит от количества отработанных дней одним автомобилем за год (Д), продолжительности смены (П) и среднечасовой выработки (СВ), мы можем значительно удлинить эту модель и разложить прирост себестоимости на большее количество факторов:

С
=
.

Метод расширения предусматривает расширение исходной факторной модели за счет умножения числителя и знаменателя дроби на один или несколько новых показателей. Например, если в исходную модель

ввести новый показатель с, то модель примет вид

.

В результате получилась конечная мультипликативная модель в виде произведения нового набора факторов.

Этот способ моделирования очень широко применяется в анализе. Например, среднегодовую выработку продукции одним работником (показатель производительности труда) можно записать таким образом: ГВ = ВП / КР. Если ввести такой показатель, как количество отработанных дней всеми работниками (Д), то получим следующую модель годовой выработки:

ГВ=
,

где ДВ – среднедневная выработка; Д – количество отработанных дней одним работником.

После введения показателя количества отработанных часов всеми работниками (Т) получим модель с новым набором факторов: среднечасовой выработки (СВ), количества отработанных дней одним работником (Д) и продолжительности рабочего дня (П):

Способ сокращения представляет собой создание новой факторной модели путем деления числителя и знаменателя дроби на один и тот же показатель :

.

В данном случае получается конечная модель того же типа, что и исходная, однако с другим набором факторов.

Другой пример. Экономическая рентабельность активов предприятия (ROA) рассчитывается делением суммы прибыли (П) на среднегодовую стоимость основного и оборотного капитала предприятия (A): ROA=П/A.

Если числитель и знаменатель разделим на объем продажи продукции (S), то получим кратную модель, но с новым набором факторов: рентабельности реализованной продукции и капиталоемкости продукции:

Результативные показатели могут быть разложены на составные элементы (факторы) различными способами и представлены в виде различных типов детерминированных моделей. Выбор способа моделирования зависит от объекта исследования, поставленной цели, а также от профессиональных знаний и навыков исследователя. Процесс моделирования факторных систем - очень сложный и ответственный момент в экономическом анализе. От того, насколько реально и точно созданные модели отражают связь между исследуемыми показателями, зависят конечные результаты анализа .

Назначение сервиса . С помощью онлайн-калькулятора определяется мультипликативная индексная двухфакторная модель.

Инструкция . Для решения подобных задач выберите количество строк. Полученное решение сохраняется в файле MS Word .

Количество данных (количество строк) 1 2 3 4 5 6 7 8 9 10

Индекс – это относительный показатель сравнения двух состояний простого или сложного явления, состоящего из соизмеримых или несоизмеримых элементов, во времени или пространстве.
Основными задачами индексного метода являются :

  • оценка динамики обобщающих показателей, характеризующих сложные, непосредственно несоизмеримые совокупности;
  • анализ влияния отдельных факторов на изменение результативных обобщающих показателей;
  • анализ влияния структурных сдвигов на изменение средних показателей однородной совокупности;
  • оценка территориальных, в том числе международных, сравнений.
Индексы классифицируют по степени охвата , по базе сравнения , по виду весов , по форме построения и по составу явления . По степени охвата индексы бывают индивидуальные и общие (сводные). По базе сравнения – динамические, индексы выполнения плана, территориальные. По виду весов – с постоянными весами и с переменными весами. По форме построения – агрегатные и средневзвешенные. По составу явления – постоянного состава и переменного состава.

Общие (сводные) индексы бывают только групповые; динамические индексы бывают базисные и цепные; индексы с постоянными весами – стандартные, базисного периода, отчетного периода; средневзвешенные индексы – арифметические и гармонические.

Условные обозначения, используемые в теории индексного метода:
р - цена за единицу товара (услуги);
q - количество (объем) какого-либо продукта (товара) в натуральном выражении;
pq - общая стоимость продукции данного вида (товарооборот);
z - себестоимость единицы продукции (изделия);
zq - общая себестоимость продукции данного вида (денежные затраты на ее производство);
Т - общие затраты времени на производство продукции или общая численность работников;
w= q/ T - производство продукции данного вида в единицу времени (либо выработка продукции на одного работника, т.е. производительность труда);
t= T/ q - затраты рабочего времени на единицу продукции (трудоемкость единицы продукции);
1 - подстрочный символ показателя текущего (отчетного) периода;
0 - подстрочный символ показателя предшествующего (базисного) периода

Индивидуальный индекс ( i) характеризует динамику уровня изучаемого явления во времени за два сравниваемых периода или выражает соотношение отдельных элементов совокупности.
Основным элементом индексного соотношения является индексируемая величина. Индексируемая величина – это признак, изменение которого характеризует индекс.
Основные формулы вычисления индивидуальных индексов:
Индекс физического объема (количества) продукции

Индекс цен

Индекс стоимости продукции

Индекс себестоимости единицы продукции

Индекс затрат на производство продукции

Индекс трудоемкости

Индекс количества продукции, произведенной в единицу времени

Индекс производительности труда (по трудоемкости)

Взаимосвязь индексов



Виды мультипликативных индексных двухфакторных моделей

Двухфакторная мультипликативная модель как правило применяется для анализа показателей разнородной продукции предприятия.
  1. Мультипликативная индексная двухфакторная модель товарооборота: Q 1 = Q 0 i p i q
    С аналитической точки зрения i q показывает, во сколько раз увеличилась (или уменьшилась) общая сумма выручки под влиянием изменения объема продажи в натуральных единицах.
    Аналогично i p показывает, во сколько раз изменилась общая сумма выручки под влиянием изменения цены товара. Очевидно, что
    i Q = i q i p , или Q 1 = Q 0 i q i p
    Формула Q 1 = Q 0 i q i p представляет двухфакторную индексную мультипликативную модель итогового показателя. Посредством такой модели находят прирост итога под влиянием каждого фактора в отдельности.
    Так, если выручка от продажи некоторого товара возросла с 8 млн. руб. в предыдущем периоде до 12,180 млн. руб. в последующем и известно, что это объясняется увеличением количества проданного товара на 5 % при цене на 45 % большей, чем в предыдущем периоде, то можно записать следующее соотношение:
    12,180 = 8 × 1,05 × 1,45 (млн. руб.).
    Распределения общего прироста по факторам в двухфакторной индексной мультипликативной модели
    Общий прирост выручки в сумме 12,180-8 = 4,180 млн. руб. объясняется изменением объема продажи и цены. Прирост выручки за счет изменения объема продажи (в натуральном выражении) составит
    ΔQ(q) = Q 0 (i q -1)
    Для нашего примера: ΔQ(q) = 8(1,05-1)=+0,4 млн. руб.
    Тогда за счет изменения цены данного товара сумма выручки изменилась на
    ΔQ(p) = Q 0 i q (i p -1) или ΔQ(p) = 8*1,05(1,45-1) = +3,78 млн.руб.
    Общий прирост товарооборота складывается из приростов, объясняемых каждым фактором в отдельности, т.е. ΔQ = Q 1 – Q 0 = ΔQ(q) + ΔQ(p)
    или ΔQ = 12,18-8=0,4+3,78 = 4,18 млн.руб.
  2. Мультипликативная индексная двухфакторная модель себестоимости (затрат, издержек обращения): Q 1 = Q 0 i z i q

Страница
6

Примером мультипликативной модели является двухфакторная модель объема реализации

где Ч - среднесписочная численность работников;

CB - средняя выработка на одного работника.

Кратные модели:

Примером кратной модели служит показатель срока оборачиваемости товаров (в днях) . ТОБ.Т:

,

где ЗТ - средний запас товаров; ОР - однодневный объем реализации.

Смешанные модели представляют собой комбинацию перечисленных выше моделей и могут быть описаны с помощью специальных выражений:

Примерами таких моделей служат показатели затрат на 1 руб. товарной продукции, показатели рентабельности и др.

Для изучения зависимости между показателями и количественного измерения множества факторов, повлиявших на результативный показатель, приведем общие правила преобразования моделей с целью включения новых факторных показателей.

Для детализации обобщающего факторного показателя на его составляющие, которые представляют интерес для аналитических расчетов, используют прием удлинения факторной системы.

Если исходная факторная модель

то модель примет вид

.

Для выделения некоторого числа новых факторов и построения необходимых для расчетов факторных показателей применяют прием расширения факторных моделей. При этом числитель и знаменатель умножаются на одно и тоже число:

.

Для построения новых факторных показателей применяют прием сокращения факторных моделей. При использовании данного приема числитель и знаменатель делят на одно и то же число.

.

Детализация факторного анализа во многом определяется числом факторов, влияние которых можно количественные оценить, поэтому большое значение в анализе имеют многофакторные мультипликативные модели. В основе их построения лежат следующие принципы: · место каждого фактора в модели должно соответствовать его роли в формировании результативного показателя; · модель должна строиться из двухфакторной полной модели путем последовательного расчленения факторов, как правило качественных, на составляющие; · при написании формулы многофакторной модели факторы должны располагаться слева направо в порядке их замены.

Построение факторной модели – первый этап детерминированного анализа. Далее определяют способ оценки влияния факторов.

Способ цепных подстановок заключается в определении ряда промежуточных значений обобщающего показателя путем последовательной замены базисных значений факторов на отчетные. Данный способ основан на элиминировании. Элиминировать – значит устранить, исключить воздействие всех факторов на величину результативного показателя, кроме одного. При этом исходя из того, что все факторы изменяются независимо друг от друга, т.е. сначала изменяется один фактор, а все остальные остаются без изменения. потом изменяются два при неизменности остальных и т.д.

В общем виде применение способа цепных постановок можно описать следующим образом:

где a0, b0, c0 - базисные значения факторов, оказывающих влияние на обобщающий показатель у;

a1 , b1, c1 - фактические значения факторов;

ya, yb, - промежуточные изменения результирующего показателя, связанного с изменением факторов а, b, соответственно.

Общее изменение Dу=у1–у0 складывается из суммы изменений результирующего показателя за счет изменения каждого фактора при фиксированных значениях остальных факторов:

Рассмотрим пример:

Таблица 2

Исходные данные для факторного анализа

Показатели

Условные обозначения

Базисные значения

Фактические значения

Изменение

Абсолютное (+,-)

Относительное (%)

Объем товарной продукции, тыс. руб.

Количество работников, чел

Выработка на одного работающего, тыс.руб.

Анализ влияния на объем товарной продукции количества работников и их выработки проведем описанным выше способом на основе данных табл.2. Зависимость объема товарной продукции от данных факторов можно описать с помощью мультипликативной модели:

Тогда влияние изменения величины количества работников на обобщающий показатель можно рассчитать по формуле:

Таким образом, на изменение объема товарной продукции положительное влияние оказало изменение на 5 человек численности работников, что вызвало увеличение объема продукции на 730 тыс. руб. и отрицательное влияние оказало снижение выработки на 10 тыс. руб., что вызвало снижение объема на 250 тыс. руб. Суммарное влияние двух факторов привело к увеличению объема продукции на 480 тыс. руб.

Преимущества данного способа: универсальность применения, простота расчетов.

Недостаток метода состоит в том, что, в зависимости от выбранного порядка замены факторов, результаты факторного разложения имеют разные значения. Это связано с тем, что в результате применения этого метода образуется некий неразложимый остаток, который прибавляется к величине влияния последнего фактора. На практике точностью оценки факторов пренебрегают, выдвигая на первый план относительную значимость влияния того или иного фактора. Однако существуют определенные правила, определяющие последовательность подстановки: · при наличии в факторной модели количественных и качественных показателей в первую очередь рассматривается изменение количественных факторов; · если модель представлена несколькими количественными и качественными показателями, последовательность подстановки определяется путем логического анализа.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама