THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Тема № 10. ТОВАРОВЕДЧЕСКИЙ АНАЛИЗ РЕЗИНОВЫХ ИЗДЕЛИЙ И ПРЕДМЕТЫ УХОДА ЗА БОЛЬНЫМИ

Ежегодно через аптечную сеть реализуются широкий ассортимент изделий медицинского назначения, а именно резиновые изделия и предметы ухода за больными. Для того чтобы ориентироваться в арсенале этих товаров, осуществлять их прием, проводить товароведческий анализ, организовывать правильное хранение и транспортировку, а также реализацию продукции, провизор должен обладать конкретными знаниями в области товароведения.

ОсновнЫЕ термИнЫ та оПРЕДЕЛЕНИЯ

Резина - материал, состоящий из высокомолекулярных соединений, которые получают при вулканизации смеси натурального или синтетического каучука с различными ингредиентами (добавками).

Каучук - натуральные или синтетические эластомеры, характеризующиеся эластичностью, водонепроницаемостью и электроизоляционными свойствами, из которых путем вулканизации получают резину и эбонит.

Вулканиза́ция - процесс превращения каучука в резину путем нагревания его с серой.

Латекс - микрогетерогенные природные (млечный сок каучуконосных растений) или искусственные системы, представляющие собой водные дисперсии коллоидных каучуковых частиц (глобул) сферической формы.

Резина - это смесь, содержащая от 15 до 20 ингредиентов, которые выполняют различные функции. В состав резиновой смеси входят:

1. каучук (натуральный и синтетический);

2. вулканизирующие агенты (сера и органические пероксиды);

3. ускорители вулканизации (оксиды цинка, магния, свинца, пероксидов натрия);

4. наполнители - они уменьшают стоимость резины и улучшают ее конечные физико-механические свойства (мел, каолин, тальк).

5. красители, которые придают изделиям из резины необходимый товарный вид;

6. смягчители или пластификаторы, они служат для облегчения процесса смешивания резиновой смеси (гомогенизации) при ее приготовлении, придают резине пластичность и морозостойкость (нефтяной гудрон, масло льна).

7. вещества, замедляющие старение вводят для замедления окислительных процессов, протекающих при переработке и эксплуатации резины, а также защиты от воздействия светового излучения (ионол).

8. усилители вулканизации, которые повышают прочность материала на разрыв (белую сажу, каолин, столярный клей, оксид цинка и др.)

9. специальные вещества вводятся в резиновую смесь для достижения определенных потребительских свойств.

Технологический процесс изготовление медицинских резиновых изделий состоит из следующих стадий:

1. Получение резиновой смеси;

2. Изготовление полуфабриката - эта операция проводится для резиновых грелок, пузырей для льда, подкладных судов, катетеров, трубок;

3. Формообразование или получения резиновых изделий проводят одним из следующих методов:

· экструзия (шприцевания ) - это основной метод изготовления неформовых изделий определенного поперечного сечения (например, трубки, катетеры, зонды, жгуты и др.)

· метод макания используется при производстве тонкостенных изделий из резины или латекса, например, медицинских перчаток (хирургических и анатомических), напальчники, пипеток, детских сосок и др. Для этого метода формы из стекла, парцеляны или металла макают в резиновую смесь

· метод прессования - используется при изготовлении резиновых пробок.

4. Вулканизация. Если процесс вулканизации нарушается, то возможно появление дефектов:

Недостаточная вулканизация приводит к повышенной клейкости, слипание поверхностей и ускорению старения изделия;

Чрезмерная вулканизация приводит к жесткости и снижению эластичности изделий.

5. После формовой обработки, монтаж, разбраковки; в грелки, пузыри для льда монтируют втулки, проверяют на герметичность.

6. Контроль качества, маркировка и упаковка.

Медицинские резиновые изделия и предметы ухода за больными представляют собой значительную группу различных по назначению изделий, используемых для проведения туалета больных, находящихся на строгом постельном режиме, для приема лекарств или жидкостей, для личной гигиены больного, а также позволяют осуществлять некоторые лечебно-профилактические процедуры продолжительно лежачих больных.

Обратите внимание! В зависимости от метода изготовления резиновые медицинские изделия классифицируют :

· неформовые - склеенные резиновым клеем шаблонные заготовки из вулканизованных резиновых листов (круги и суда подкладные);

· формовые изделия - полученные прессованием или выливанием под давлением в пресс-формах (грелки, пузыри, спринцовки);

· безшовные - изделия, полученные методом экструзии или шприцевания (трубки, жгуты), или методом макания формы в латекс (перчатки, напальчники и др.).

Также резиновые медицинские изделия по внешним характеристикам подразделяют на:

Ø полые (грелки, пузыри для льда, круги и суда подкладные, спринцовки, кружки ирригаторные, кольца маточные, баллоны, меха и др);

Ø эластичные трубчатые (трубки для дренажа, переливания крови, катетеры, зонды и др);

Ø эластичные для наркоза и искусственного дыхания (воздуховоды, интубационные трубки, маски наркозные ротоносовые);

Ø изделия из латекса (перчатки хирургические и анатомические, напальчники, колпачки к медицинским пипеткам, детские соски и др).

АССОРТИМЕНТ РЕЗИНОВИХ ИЗДЕЛИЙ

Полые резиновые изделия, полученные методом формирования

Грелки резиновые - емкости с теплоносителями (например, водой), предназначенные для местного или общего теплового воздействия на организм, применяются с лечебной целью или как предметы медицинского ухода, а также для согревания при переохлаждении. Кроме резиновых (заполняемые водой) существуют химические (гелевые, солевые) и электрические грелки.

Резиновые грелки изготавливают в виде сосудов емкостью 1 л (№ 1) имеет длину 195 мм и ширину 155 мм, 2 л (№ 2) длина 260 мм и ширина 185 мм, 3 л (№ 3) длина 295 мм и ширина 200 мм, а также фигурные для детей (рис.113) «Рыбка», (рис. 114) - «Солнышко» и др., иногда их комбинируют с устройством для ирригации.

Согласно ДСТУ 2667-94 (ГОСТ 3303-94) предусматривается выпуск грелок двух типов:

· А - для местного согревания тела (рис. 115);

· Б - для промывания, спринцевания и местного согревания тела (рис. 116).

Корпус грелки одинаков для обоих типов, однако грелка типа А имеет только пробку завинчивающуюся, а типа Б - комплектуется резиновым шлангом длиной 1400 мм и диаметром 8 мм, на конец которого надет тройник с краном и наконечник. Грелка комплектуется тремя наконечниками: для детей, взрослых и маточным. Изготавливают грелки с петлей для подвешивания в двух вариантах: выступающей и скрытой.

Гарантийный срок хранения грелок 3-5 лет с момента изготовления, однако гарантийный срок эксплуатации - 2 года с момента ввода в эксплуатацию.

Пузырь резиновый для льда представляет собой резервуар различной формы с широкой горловиной, который применяют для местного лечения холодом. Горловину закрывают пластмассовой пробкой с винтовым затвором, имеющим резиновую шайбу в качестве уплотняющей прокладки. Резиновый пузырь общего назначения выпускают трех размеров в зависимости от диаметра: № 1 (150), № 2 (200), № 3 (250 мм). Они содержат от 0,5 до 1,5 кг льда.

Кроме того, выпускают специальные пузыри для льда на область сердца для мужчин и женщин, пузыри для уха, глаз и горла , которые снабжены резиновыми петлями для крепления к телу. Гарантийный срок годности пузырей 3,5 лет. Гарантийный срок эксплуатации при индивидуальном пользовании - 3 года, при использовании в лечебных учреждениях 1,5 года.

Спринцовки представляют собой резиновый баллон грушевидной формы с достаточно упругими стенками различной вместимости с мягким или твердым наконечником из эбонита или пластмассы.

Спринцовки с мягким наконечником (типа А) (рис. 6) выпускают вместимостью: 15 (№), 30 (№ 1), 45 (№ 1), 60 (№ 2), 75 (№ 2), 90 (№ 3), 120 (№ 4), 180 (№ 6) и 270 (№ 9) мл. В маркировке спринцовки на дне указывают только номер согласно НД (рис. 5), каждый номер спринцовки соответствует 30 мл вместимости.

Рис. 117. Пример маркировки дна спринцовки

Спринцовки с твердым наконечником (типа Б) (рис. 117) выпускают вместимостью: 30 (№ 1); 60 (№ ); 90 (№ 2); 120 (№ shortcodes">

Резина — продукт вулканизации композиции, содержащей связующее вещество — натуральный или синтетический каучук.
В конструкции современных автомобилей используют несколько сот изделий, выполненных из резины. Это шины, камеры, шланги, уплотнители, герметики, детали для электро- и виброизоляции, приводные ремни и т. д. Их масса составляет до 10 % от общей массы автомобиля.
Широкое применение резиновых изделий в автомобилестроении объясняется их уникальными свойствами:
. эластичностью;
. способностью поглощать ударные нагрузки и вибрацию;
. низкой теплопроводностью и звукопроводностью;
. высокой механической прочностью;
. высокой сопротивляемостью к истиранию;
. высокой электроизоляционной способностью;
. газо- и водонепроницаемостью;
. устойчивостью к агрессивным средам;
. низкой плотностью.
Основное свойство резины — обратимая эластичная деформация — способность многократно изменять свою форму и размеры без разрушения под воздействием сравнительно небольшой внешней нагрузки и вновь возвращаться в первоначальное состояние после снятия этой нагрузки.
Подобным свойством не обладают ни металлы, ни древесина, ни полимеры.
На рис. 1 приведена классификация резины .
Резину получают вулканизацией резиновой смеси, в состав которой входят:
. каучук;
. вулканизирующие агенты;
. ускорители вулканизации;
. активаторы;
. противостарители;
. активные наполнители или усилители;
. неактивные наполнители;
. красители;
. ингредиенты специального назначения.



Рис. 1. .Классификация резин .

Натуральный каучук — природный полимер, представляющий собой непредельный углеводород — изопрен (С5Н8)n.
Натуральный каучук добывают главным образом из млечного сока (латекса) каучуконосных растений, в основном из бразильской гевеи, в котором его содержится до 40 %.
Для выделения каучука латекс обрабатывают уксусной кислотой, под действием которой он свертывается, и каучук легко отделяется. Затем его промывают водой, прокатывают в листы, сушат и коптят для устойчивости против окисления и действия микроорганизмов.
Производство натурального каучука (НК) требует больших затрат и не покрывает промышленных потребностей. Поэтому наибольшее распространение получил синтетический каучук (СК). Свойства СК зависят от строения и состава.
Изопреновый каучук (обозначается СКИ) по своему составу и строению близок к натуральному каучуку, по некоторым показателям уступает ему, а по каким-то превосходит. Резина на основе СКИ отличается газонепроницаемостью, достаточной стойкостью против воздействия многих органических растворителей, масел. Существенные его недостатки — низкая прочность при высоких температурах и низкая озоно- и атмосферостойкость.
Бутадиен-стирольный (СКС) и бутадиен-метилстирольный (СКМС) СК наиболее широко используются в автомобилестроении. Резины на основе этих каучуков имеют хорошие прочностные свойства, высокое сопротивление изнашиванию, газонепроницаемость, морозо- и влагостойкость, однако нестойки при воздействии озона, топлива и масел.
Резина на базе бутадиенового каучука (СКД) эластична, износостойка, имеет хорошие физико-механические свойства при низких температурах, однако существуют трудности при переработке резиновых смесей. Она имеет недостаточно прочную связь с металлокордом при производстве армированных изделий.
Из СК специального назначения бутадиен-нитрильный (СКН) каучук отличается высокой бензомаслостойкостью, сохраняет свои свойства в широком интервале температур, обеспечивает прочную связь с металлами, поэтому применяется для изготовления металлорезиновых изделий, работающих в контакте с нефтепродуктами. Недостаток — быстрое старение.
Резины на основе фторкаучука (СКФ) и акрилатного каучука (АК) обладают очень высокими прочностными свойствами, стойки к воздействию топлив, масел, многих других веществ, высоких температур, однако низкая морозостойкость ограничивает их применение. Комплексом положительных свойств обладают силиконовые каучуки.
Молекулы СК являются полимерными цепями с небольшим числом боковых ответвлений. При нагревании с некоторыми вулканизирующими веществами между молекулами каучука образуются химические связи — «мостики», что резко изменяет механические свойства смеси. Чаще всего в качестве вулканизирующего ингредиента используют серу (1—3 %).
Для ускорения вулканизации в резиновую смесь добавляют ускорители и активаторы.
Чрезвычайно важным ингредиентом резины являются наполнители. Активные наполнители резко усиливают прочностные свойства резины. Чаще всего роль активного наполнителя выполняет технический углерод (сажа). Введение технического углерода делает резину более прочной, повышает износостойкость, упругость, твердость. Неактивные наполнители (мел, асбестовая мука и др.) служат для увеличения объема резиновой смеси, что удешевляет изготовление резины, но ее физико-механических свойств не улучшают (некоторые наполнители даже ухудшают).
Пластификаторы (мягчители) облегчают приготовление резиновой смеси, формование изделий, а также улучшают эластичность резины при низких температурах. В качестве пластификаторов используют высококипящие фракции нефти, каменноугольную смолу, растительные масла, канифоль, синтетические смолы. Для замедления процессов старения резины и увеличения ее ресурса в состав резиновой смеси вводят противостарители (антиокислители, стабилизаторы).
Особая роль отводится армирующим наполнителям. Они не входят в состав резиновой смеси, а вводятся на стадии формования изделия. Текстильная или металлическая арматура снижает нагрузку на резиновое изделие, ограничивает его деформацию. Изготавливают такие армированные резиновые изделия, как шланги, приводные ремни, ленты, автопокрышки, где для усиления прочности используют текстильный и металлический корды.
Подбором соответствующих каучуков, рецептуры резиновой смеси, условий вулканизации создают материалы, имеющие определенные свойства, что позволяет получать изделия, обладающие различными эксплуатационными свойствами, причем устойчиво сохраняющие свои качества продолжительное время и обеспечивающие функциональное назначение деталей и работоспособность узлов и агрегатов.
Из отработавших резинотехнических изделий изготовляют по специальной технологии регенерат, который добавляют в резиновую смесь в качестве заменителя части каучука. Однако резина, в состав которой входит регенерат, не отличается хорошими эксплуатационными свойствами, а потому из нее изготовляют изделия (коврики, ободные ленты), к которым не предъявляют высоких технических требований.

Резина представляет собой сложный искусственный материал, получаемый в результате вулканизации резиновой смеси, основным компенентом которой является каучук.

Уникальным свойством резины является высокая эластичность, сочетающаяся с рядом важнейших фи­зико-механических и химических свойств: малой плот­ностью, высоким сопротивлением разрыву и истиранию, хорошими электроизоляционными свойствами, хими­ческой стойкостью, морозо-, тепло- и маслостойкостью, газо- и водонепроницаемостью и другими свойствами, обусловившими широкое применение резины и изделий из нее в различных отраслях народного хозяйства. Недостаток резины - склонность к старению, ухудшению основных свойств и внешнего вида в процессе эксплуатации и низкая теплостойкость. Механические свойства резины характеризуются прежде всего проч­ностью и твердостью.

Твердость резины обычно определяется глубиной проникновения в испытуемый образец недеформируе-мого шарика диаметром 5 мм, действующего в течение 30 с под нагрузкой 10Н. Химическая стойкость резины определяется изменением массы после выдержки в течение 24 ч в маслах, бензине, керосине или в других средах (в % от первоначальной массы образца). Теп­лостойкость резины оценивается изменением первона­чальной длины образца при действии одинаковой нагрузки в условиях нормальной и повышенной темпе­ратур. Морозостойкость резины характеризуется сни­жением эластичности при минусовых температурах и изменением первоначальной длины образца при дей­ствии одинаковой нагрузки в условиях нормальной и пониженной температур. Старение резины оценива­ется изменением основных свойств и внешнего вида при нагревании в специальном термоконтейнере в те­чение 140 ч при температуре 70°С.

Выпускаемые промышленностью резины классифи­цируются по ряду основных признаков. По твердо­сти они подразделяются на пористые (губчатые и др.), мягкие, эластичные, средней твердости, твердые, высокой твердости и жесткие (эбониты). По назна­чению резины, как и каучуки, подразделяются на общего и специального назначения. Резины общего назначения применяются для изготовления шин, при­водных ремней, транспортерных лент, обуви, уплотни-тельных и амортизационных деталей, предметов сани­тарии и гигиены и других изделий, которые могут использоваться в горячей воде, слабых растворах ще­лочей и кислот, а также на воздухе при температуре от -20 до +150°С. Резины специального назначения делятся на тепло- и морозостойкие, масло- и топливо-стойкие, химически стойкие, светостойкие, газонепро­ницаемые, диэлектрические, стойкие к действию радиации и др. Они применяются для изготовления деталей химической, топливной и масляной аппарату­ры, в производстве аэростатов и скафандров, надувных лодок, спецодежды и других изделий, устойчиво работающих при температуре более 150°С, а также в условиях Крайнего Севера и Антарктиды, для изготов­ления гуммированных цистерн и баков для хранения и транспортирования химических продуктов (например, соляной кислоты), диэлектрических изделий и т. п. К резинам специального назначения относится и ар­мированная резина. Она содержит каркас из ткани или металла и обладает не только эластичностью и прочностью, но и сохраняет свои размеры и свойства под нагрузкой. В качестве армирующего материала используются хлопчатобумажные ткани и ткани из синтетических волокон, металлические сетки или спи­рали, покрытые латунью. Такие резины применяются для изготовления автомобильных и авиационных по­крышек, транспортерных лент, приводных ремней, ру­кавов, гибких трубопроводов, шлангов и др. По тех­нологии производства резиновые " изделия подразделяются на клеенные, формованные, штампо­ванные, литые и др. По типу и конструкции резинотехнические изделия подразделяются на шины, приводные ремни и транспортерные ленты, трубчатые резиновые технические изделия, резиновые детали машин, приборов и аппаратов, диэлектрические изде­лия, пористые резиновые технические изделия, эбони­товые изделия и др. Шины предназначены для сцепле­ния колес различных средств транспорта с дорожным покрытием, обеспечения его надежной устойчивости, амортизации толчков и ударов при движении машин, повышения скорости и проходимости машин и т. д. Современные шины отличаются конструкцией, механи­ческой характеристикой, назначением, размерами и материалами. По конструктивным особенностям шины подразделяются «а массивные и пневматические. Мас-сивные шины представляют собой сплошное резиновое кольцо, надевающееся на обод колеса. Такие шины не обладают достаточной амортизационной способностью и применяются на транспорте, работающем с малыми нагрузками и скоростями (электрокары, тракторные шасси, специальные машины и др.). У пневматических шин внутри полость заполнена сжатым воздухом. Такие шины имеют высокую амортизационную способ­ность и широко используются во всех видах автомоби­лей, самолетов, тракторов и сельскохозяйственных машин. При этом сжатый воздух находится либо в специальной камере, расположенной внутри покрышки (камерные шины), либо в самой покрышке (бескамер­ные шины). Бескамерные шины более сложны в изго­товлении, но имеют лучшую герметизацию и более надежны при езде на больших скоростях и в трудно­проходимых условиях.


Основными характеристиками пневматических шин, которые указываются в документе при поставках по­требителям, являются размеры, прочность, твердость, сопротивление истиранию, допускаемые нагрузки и скорость, а также внутреннее давление воздуха в шине. По своим параметрам шины должны соответствовать модели транспортного средства, на котором они уста­навливаются. Поставляемые шины имеют буквенно-цифровую маркировку, включающую размеры, первую букву наименования завода-изготовителя, дату и поряд­ковый номер шины.

Приводные ремни ирезназначены для передачи окружного усилия от электродвигателя к рабочим ма­шинам (от ведущего шкива к ведомому) с помощью трения. В ременной передаче (рис. 60) могут быть использованы плоские ремни а, клиновые б, круглые в и поликлиновые ремни г. Наибольшее распространение в технике получили плоские ремни, используемые по одному в передаче, и клиновые, применяемые в переда­чах по нескольку штук. Плоские прорезиненные ремни состоят из 2-9 слоев хлопчатобумажной или другой ткани, склеенных вулканизированной резиной. В зави­симости от величины передаваемой мощности ширина

плоских прорезиненных ремней принимается 20-1200 мм. Кли­новые ремни иеют трапецие­видное сечение с боковыми ра-> бочими сторонами и работают на шкивах с канавками соответст­вующего профиля (рис. 61). Ре­мень состоит из корда, являюще­гося основным несущим слоем, резиновых слоев над и под кор­дом, а также обертки ремня из прорезиненной ткани. Клиновые ремни выпускаются бесконечны­ми с сечениями О, А, Б, В, Г, Д и Е. Угол клина ремней а =40°. Расчетная длина ремня соответ­ствует длине его по нейтральной си, проходящей через центр тяжести поперечного сече ния ремня, и принимается для вычисления межцентро вых расстояний шкивов. Размеры сечений и длины кли новых ремней характеризуются данными табл. 15.

Поликлиновые ремни сочетают преимущества пло­ских ремней - монолитность и гибкость и клиновых - повышенную силу сцепления со шкивом. Круглые про­резиненные ремни применяются в приводах малой мощности, например, в швейных машинах, в холодиль­никах и др.

Ленты транспортерные по своей конструкции напо­минают плоские прорезиненные ремни и предназначены для транспортирования различных материалов на рас стояния. Они состоят из 3-12 прокладок, представляю­щих собой соединение резины с текстильными материа­лами, и имеют ширину от 300 до 1200 мм. В зависимости от условий работы транспортерные ленты поставляются общего и специального назначения (морозостойкие, теплостойкие, маслостойкие и др.).

Трубчатые резиновые технические изделия (рукава, шланги, трубы и др.) применяются для транспортиро­вания жидких, вязких, сыпучих материалов и газов либо под давлением (нагнетательные системы), либо под действием вакуума (всасывающие системы). В отличие от металлических, керамических и других жестких труб трубчатые резинотехнические изделия обладают гиб­костью и при эксплуатации могут подвергаться изгибу. Для их изготовления применяются резиновые смеси общего и специального назначения, в качестве напол­нителей используются текстильные ткани из натураль­ных и химических волокон и металлические материалы (металлическая плетенка, металлокорд и металлотрос).

Резинотехнические изделия включают большой ассортимент различных по виду и назначению деталей машин, приборов и аппаратов. Основными потребителями разнообразных резиновых деталей являются авто-, тракторо- и авиастроение, а также другие отрасли ма­шиностроения. По основным свойствам и назначению резины, применяемые в машиностроении, подразделяют­ся на 10 классов и ряд групп. Среди них важное значение имеют резиновые покрытия металлоизделий (обкладки валов и химической аппаратуры и др.), в которых резина служит средством создания эластичной поверх­ности и антикоррозионного покрытия; резинометалли-ческие изделия, где резина используется как аморти­затор толчков и вибраций, как средство неразъемного соединения двух металлических деталей и как глуши­тель звука; резиновые и резинотканевые изделия, в ко­торых используется основное свойство резины - эла­стичность (уплотнители, манжеты, соединительные кольца, амортизационные шнуры и пластины), и другие резинотехнические изделия, широко применяемые в ав­томобилях, автобусах, самолетах, тракторах и др.

Широкое распространение в технике диэлектрических резиновых изделий обусловлено высокими электроизо­ляционными свойствами резины. Резина используется для изоляции кабелей и электропроводов, изготовления защитных средств (перчаток, ковриков, калош, бот и др.), а также других диэлектрических изделий, необ­ходимых при работе с высоковольтной аппаратурой. Пористые резинотехнические изделия обладают малой объемной массой (0,1-0,9 г/см3), хорошими звуко- и теплоизоляционными свойствами. По характеру пор они подразделяются на губчатые (с крупными откры­тыми порами), ячеистые (с закрытыми порами) и мик­ропористые изделия. Пористая резина используется для изготовления амортизаторов и сидений в авто- и тракто­ростроении, в качестве теплоизоляционного материала в рефрижераторных" установках, уплотнительных про­кладок в различных отраслях промышленности, для обивки стен и как шумопоглощающий материал в стро­ительстве и т. д. Эбонит выпускается в виде пластин, плит, листов, прутков, труб и других изделий и приме­няется в качестве конструкционного материала при изготовлении деталей измерительных приборов и раз­личной электроаппаратуры. Как электроизоляционный материал эбонит используется в производстве деталей и узлов аккумуляторов, баков, моноблоков, сепараторов и других деталей.

Классификация:

1.Полые изделия, получаемые формованием

2. Трубчатые эластичные изделия, получаемые методом экструзии

3. Изделия, полученные методом макания

1. Полые изделия, получаемые формованием

1) грелки резиновые предназначены для местного согре­вания или для местного согревания, промывания и спринцевания.

Классификация:

а) тип А – для местного согревания тела (имеет только завинчивающуюся пробку),

б) тип Б – для промывания, спринцевания и местного согрева­ния тела (комплектуется резиновым шлангом, краном и наконечниками (детским, взрослым и маточным))

По форме петли для подвешивания:

а) с выступающей петлей

б) со скрытой петлей

Проверка качества:

2) на герметичность: грелку наполняют воздухом , закрывают пробкой, погружают в воду и сдавливают ее рукой =>

3) на прочность и герметичность: грелку наполняют подкрашеннойводой , закрывают пробкой, а затем на грелку помещают груз массой 25 кг на 3 ч. => не должно быть протекания воды и остаточной деформации изделия.

2) пузыри для льда применяются для местного лечения холодом.

а) общего назначения

б) специального назначения (на область сердца у мужчин; на область сердца у женщин; для уха; для гла­за; для горла). Они снабжены резиновыми петлями для крепле­ния к телу.

Проверка качества:

1) на отсутствие внешних дефектов

2) на герметичность (Iспособ): пузырь заполняютвоздухом , закрывают пробкой, погружают в воду и сдавливают => не должно быть пузырьков воздуха

3) на герметичность (IIспособ): пузырь заполняют подкрашеннойводой , закрывают пробкой, вытирают и помещают его на 2 ч. пробкой книзу на сухой лист чистой фильт­ровальной бумаги => не должно быть протекания воды

3) круги подкладные служат для защиты от образования пролеж­ней, а также при их лечении у длительно лежащих больных.

Проверка качества:

1) на отсутствие внешних дефектов

2) на герметичность: круг подкладной заполняют воздухом , закрывают вентилем, погружают в воду и сдавливают => не должно быть пузырьков воздуха

3) на прочность и герметичность: круг подкладной наполняют воздухом , закрывают вентилем, а затем на круг помещают груз массой 90 кг на 1 ч. => не должно быть утечкивоздуха (снижения высоты надутого круга) и остаточной деформации изделия.

4) судна подкладные резиновые применяют для обслуживания тя­желобольных в домашних и больничных условиях. Судна отличаются от резиновых кругов наличием дна и имеют продолговатую форму.

Проверка качества:

2) на герметичность: судно подкладное резиновое заполняют воздухом , закрывают вентилем, погружают в воду и сдавливают => не должно быть пузырьков воздуха.

5) спринцовки служат для промывания различных каналов и поло­стей (в том числе и ран) в детской практике – для очистительных и других клизм, а также их применяют в лабораторной работе. Большие спринцовки чаще применяют для клизм, средние – для промыва­ния ушей, малые – в лабораторной работе.

а) с мягким наконечником (тип А)

б) с твердым наконечником (тип Б)

Каждый номер спринцовки соответствует 30 мл вмести­мости (№ 1 = 30 мл).

Резиновые баллоны спринцовок должны обладать достаточной упругостью, которую принято называть активностью спринцовок. Она выражается числом секунд, необходимых для наполнения спринцовок водой.

Проверка качества:

1) на отсутствие внешних дефектов.

2) проверка активности: спринцовка обрабатывается дезинфицирующими средствами, а затем определяется число секунд, необходимых для наполнения спринцовок водой =>

3) проверка вместимости: спринцовку наполняют водой, а затем воду из наполненной спринцовки выливают в мерный цилиндр => полученное значение должно соответствовать значению, указанному в ГОСТе или ТУ.

4) на герметичность: спринцовку заполняют воздухом , закрывают пробкой, погружают в воду и сдавливают => не должно быть пузырьков воздуха.

5) на стойкость к стерилизации.

6) кружка ирригаторная резиновая служит в домашних и боль­ничных условиях для спринцевания. Представляет собой плоский широкогорный резервуар, соединенной с резиновой трубкой, имеющей кран и наконечник.

Проверка качества:

1) на отсутствие внешних дефектов

2) на герметичность: кружку заполняют подкрашенной водой , перекрывают кран и подвешивают на 8 ч => не должно быть протекания воды

7) кольца маточные предназначены для предупреждения выпаде­ния матки. Представляют собой формовые полые изделия, по фор­ме похожие на миниатюрные автокамеры.

Проверка качества:

1) на отсутствие внешних дефектов

8) баллоны и мехи ʹ. Баллоны должны быть упругими, т. е. после сжатия их ру­кой до соприкосновения стенок и последующего разжатия долж­ны принимать первоначальную форму.

1) для медицинской аппаратуры (толстостенные)

2) для продувания ушей и для каплемеров (тонкостенные)

Мехи резиновые предназначены для нагнетания воздуха, в том числе для распыления жидкостей с помощью пульверизатора.Отличаются от баллонов тем, что снабжены двумя клапанами – всасывающим и нагнетательным.

1) тип А 1 – имеет 2 баллона (тонкостенный и толстостенный)

2) тип А 2 – имеет 2 баллона (толстостенные)

3) тип Б – имеет 1 баллон (толстостенный)

9) маски наркозные ротоносовые – служат для герметичного соединения легких больного с системой аппарата для ингаляционного наркоза или аппарата искусственного дыхания. Современные маски имеют каркас из жесткой резины и съемный надувной обтуратор, наличие которого позволяет осуществить плотное прилегание маски к лицу. Наполнение обтуратора осуществляют аналогично про­цедуре надувания манжетки интубационной трубки. Для при­соединения лямок, прикрепляющих маску плотно к лицу больно­го, на маске имеют два выступа – кнопки. Цилиндрическим отростком маску насаживают на металлический наконечник шланга аппарата.

Проверка качества:

1) на отсутствие внешних дефектов

10) соски детские формовые (т.е. получаемые формованием) – имеют сложную форму. Соски более простой формы (большинство сосок) получают методом макания.

Проверка качества:

1) на отсутствие внешних дефектов

Рези новые изде лия, подразделяют обычно на три основных класса:

2) резинотехнические изделия, применяемые как комплектующие детали в авто-, авиа- и судостроении, в с.-х. машиностроении, на ж.-д. транспорте, в строительстве и др.:

Технологический процесс производства резиновых изделий из твёрдых включает две общие стадии: подготовительную - получение совмещением с необходимыми ингредиентами в закрытых резиносмесителях или на вальцах и заключительную - полуфабриката резинового изделия при 140-200 °С и 0,3-20 Мн/м 3 (3-200 кгс/см 2); выбор вулканизационного оборудования (пресс, котёл, аппараты непрерывного действия различной конструкции и др.) определяется видом резиновых изделий. Используемые в производстве многих резиновых изделий текстильные материалы и подвергают предварительной обработке, цель которой - обеспечение прочной связи с этими материалами в различных условиях эксплуатации резиновых изделий. Текстильные материалы пропитывают на специальных машинах или др. адгезионными составами и промазывают на (см. ) . обезжиривают органическими и наносят на них слой или (т. н. латунирование, которое осуществляют в гальванической ).

Ниже рассматриваются основные виды резинотехнических изделий и резиновой обуви. Виды шин и технология их производства описаны в ст. Шина.

Резинотехнические изделия (РТИ). Эти изделия подразделяют обычно на следующие основные группы: формовые РТИ; неформовые РТИ; транспортёрные ленты; ремни; рукава. Для производства РТИ используют практически все общего и специального назначения (см. , ).

Формовые РТИ - обширная группа (около 30 000 наименований) прокладочных, уплотняющих и амортизирующих деталей (сальники, кольца различного сечения, пыле-, влаго- и маслозащитные , резинометаллические амортизаторы и др.). Эти РТИ получают формованием с одновременно её в пресс-форме, установленной на прессе (см. ), или методом .

В группу неформовых РТИ входят изделия (около 12 000 наименований), используемые главным образом для уплотнения окон и дверей автомобилей, самолётов, ж.-д. вагонов, для герметизации стыков строительных панелей и др. Изготовляют их в виде профилированных жгутов различной длины и поперечного сечения экструзией и последующей полуфабриката в аппаратах непрерывного действия или в котлах (периодический способ). Уплотнители могут быть как монолитными, так и пористыми (см. ).

Транспортёрные (конвейерные) ленты, которые являются элементами конвейеров различного назначения, предназначены для перемещения сыпучих и др. материалов. Ленты армируют главным образом (из , хлопчато-бумажными, комбинированными) с диапазоном разрывных усилий 65-300 кн/м, или кгс/см; для армирования лент, которые должны иметь особенно высокую , используют латунированный стальной трос. Технология производства резинотканевых лент включает сборку тканевого сердечника на дублировочных агрегатах, обкладку сердечника слоем необходимой толщины на и ленты в прессе, плиты которого имеют длину около 10 м. См. также Лента конвейерная.

Ремни, служащие гибким элементом ремённой передачи, в двигателях автомобилей, с.-х. машин, различных промышленных установок, подразделяют на плоские и клиновые. Технология производства плоских ремней, которые представляют собой многослойную резинотканевую , аналогична технологии производства транспортёрных лент (для получения ремня необходимой ширины до или после её режут на полосы). Клиновые ремни имеют замкнутую конструкцию, а их сечение - трапециевидную форму. Основные детали таких ремней: центральный (несущий) слой из прорезиненной корд-ткани или кордшнура (см. ); резиновый слой, расположенный между широким и несущим слоем (т. н. слой растяжения); резиновый слой, который размещен между несущим слоем и узким (т. н. слой сжатия); наружный (обёрточный) тканевый слой. Ремни собирают на станках, а затем вулканизуют в котле, в прессе или в специальных (ротационных или диафрагменных) вулканизаторах; выбор вулканизационного оборудования зависит от длины и сечения ремня.

Рукава - гибкие трубопроводы, применяемые для подачи , сыпучих материалов и др. под избыточным (напорные рукава) или (всасывающие рукава). Общие элементы конструкции этих РТИ: внутренний (герметизирующий) резиновый слой, силовой каркас и наружный резиновый слой. Силовой каркас для рукавов, рассчитанных на до 2 Мн/м 2 (20 кгс/см 2), представляет собой тканевую ; для рукавов, эксплуатируемых при до 10 и до 70 Мн/м 2 (100 и 700 кгс/см 2), - соответственно нитяную и металлическую оплётку. Всасывающие рукава [допустимый 80 кн/лг (600 мм рт. cт.)] снабжены, помимо силового каркаса, металлической спиралью. Внутренний и наружный слои рукавов изготовляют экструзией, прокладочный силовой каркас накладывают на сборочных станках, нитяную или металлическую оплётку - на специальных оплёточных машинах. Собранный рукав бинтуют тканевой лентой или опрессовывают свинцовой оболочкой и вулканизуют в котле (после ленту или оболочку удаляют).

В. Б. Павлов.

Резиновая обувь (РО). В зависимости от назначения РО подразделяют на бытовую, спортивную и техническую; последняя предназначена для защиты ног человека от действия , агрессивных агентов, низких , ударов и др. вредных воздействий (например, сапоги для рыбаков, шахтёров, рабочих химических производств, диэлектрическая РО). По способу производства различают следующие виды РО: клеёную, которую собирают (склеивают) из предварительно заготовленных деталей на конвейерных линиях, а затем лакируют и вулканизуют в котле; штампованную, изготовляемую высокопроизводительным методом ударного штампования на специальных прессах с последующими лакированием и в котле (метод используют только в производстве галош); формовую, которую изготовляют прессованием в форме с одновременной олигомеров (например, ) и . См. также Обувь.

В. С. Альтзицер.

Лит.: Кошечев Ф. Ф., Корнев А. Е., Климов Н. С., Общая технология , 3 изд., М., 1968; Лепетов В. А:, Расчеты и конструирование резиновых технических изделий и форм, Л., 1972; Резиновая рабочая обувь, каталог, М., 1969 (ЦНИИТЭНефтехим); Абуладзе М. Л., Володарский А. Н., 3олин А. Д., Состояние и перспективы развития производства резиновой обуви, М., 1970 (ЦНИИТЭНефтехим).



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама