THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

--В чем состоит метод, используемый для исследования картин классиков?

— Базовые основы нашего подхода не новы - это рентгенофлуоресцентный анализ (РФА), ему около 100 лет. Он позволяет определить на качественном уровне элементный состав образца. Более продвинутые технологии РФА позволяют количественно оценить содержание элементов в исследуемом объекте. Около 20 лет назад РФА был применен для количественного анализа распределения элементов по площади образца - в данном случае это картина, произведение искусства. (Одной из первых рентгенографически «переоткрытых» картин была «Дама с единорогом» Рафаэля, — прим. «Газеты.Ru» .) Мы применили этот метод для исследования картин старых мастеров и создали специальное оборудование, которое позволяет обследовать такие большие объекты.

— Как работает РФА для исследования картин?

— Образец исследуют, направляя сфокусированный пучок рентгеновских лучей в образец, точка за точкой. Атомы в этом крайне небольшом участке возбуждаются при воздействии первичного пучка. В результате переходов электронов между различными энергетическими уровнями образец флуоресцирует, а параметры излучения являются характеристичными, то есть уникальными для каждого элемента. Таким образом,

по длине волны излучения можно определить с большой долей вероятности красители, использованные при нанесении изображения.

Интенсивность флуоресцентного излучения для каждого элемента визуализируется в виде черно-белого распределения по изображению.

Таким образом, наш метод кардинально отличается от классической радиографии, (просвечивания). Если в радиографии излучение, проходящее через образец, дает только картинку контраста, наш метод - его можно назвать цветной радиографией - фиксирует весь спектр испускания каждого отдельного элемента.

— Как выглядят «слои под слоями»?

— На иллюстрациях показаны результаты визуализации скрытых живописных слоев нескольких исторических картин; по ним можно оценить возможности нашего метода.

Первый набор изображений посвящен картине «Pauline im weißen Kleid vor sommerlicher Baumlandschaft» (Полина в белом платье на фоне летнего лесного пейзажа). Эту картину приписывают кисти Филлипа Отто Рунге (немецкий художник-романтик, живший в 1777-1810 годах). Однако это мнение официально не признано, и ряд экспертов опровергают такое предположение.

Картину исследовали на источнике синхротронного излучения DORIS III в научном центре DESY (Deutsches Elektronen Synchrotron) в Гамбурге (Германия). В результате удалось разделить вклады кобальта (Co, входит в состав краски «кобальтовая синяя»), ртути (Hg, входит в состав красной киновари), сурьмы (Sb, входит в состав краски «неаполитанская желтая») и свинца (Pb, входит в состав свинцовых белил). Результат вкладов каждой краски в черно-белом варианте показан на иллюстрациях.

На них хорошо видно, как

наш метод визуализирует скрытые живописные слои: как видно, женщина на портрете изначально имела светлые волосы, в которые были вплетены ленты.

Их цвет был примерно схож с цветом пояса. На конечном изображении мы этого не видим - вот прямой результат наблюдения слоев под слоями. Эти данные были опубликованы в журнале Zeitschrift fur Kunsttechnologie und Konservierung (двуязычный немецко-американский журнал об исследовании искусства).

— Какие тайны скрывают недра картин?

— Самый яркий пример - картина великого постимпрессиониста Винсента ван Гога «Лоскут травы» из собрания музея Kröller-Müller (на иллюстрации к заметке). Ее РФА-исследование показало, что под красочным слоем на холсте находится портрет женщины.

Ван Гог часто писал свои картины на старых использованных холстах. Визуальное обследование «Лоскута травы» позволяло лишь заметить контур человеческой головы - и не более. Наше исследование позволяет увидеть вторую картину по распределению желтой краски. Результаты работы опубликованы в журнале Journal of Analytical Atomic Spectrometry .

— В чем важность таких исследований для искусствоведов?

— Большой интерес представляет техника работы художника, процесс создания работы. А подмалевок, остающийся в нижних слоях живописи, не виден глазом. Однако он является первым и одним из самых важных шагов в создании картины. Это черновик, который вел художника через весь творческий процесс. Старые мастера использовали подмалевок, чтобы набросать свет, тени и контуры.

Наблюдения скрытых слоев картины дают нам возможность «подсмотреть» за тем, каков был первоначальный замысел автора работы.

Глядя на конечный результат, о таких вещах судить практически невозможно.

— Какие картины уже исследованы этим методом?

— Объектами исследования послужили работы Рембрандта Харменса ван Рейна, да Караваджо, Питера Пауля Рубенса и других старых мастеров XVII века.

— Какую практическую пользу могут принести эти работы?

— Используя РФА, мы надеемся уточнить авторство некоторых работ — либо рассеять сомнения об их происхождении, либо подтвердить, что картины не принадлежат кисти мастера, которому их приписывают. Вообще это прекрасный шанс показать, что мир искусства может взаимодействовать с миром химии. Вообще химия - это всеохватывающая наука. Прекрасно, что можно показать, что химия - это не только наука о молекулах и реакциях, но и об исследовании таких прекрасных произведений искусства.


Кому из художников первому пришла в голову идея использовать в своем творчестве , история современного искусства умалчивает. Зато услужливо демонстрирует те произведения, которые были созданы как раз с помощью этой техники, пока еще необычной и новой для творчества. Мы помним о Мэтью Кокса (Matthew Cox), в творчестве Hugh Turvey, из рентгеновских снимков ракушек и , составленный понятно, из каких изображений. Итальянская художница Бенедетта Боничи (Benedetta Bonichi) также использует рентгеновский аппарат в качестве инструмента для творчества, "рисуя" свои картины его лучами.


Несмотря на то, что сюжеты "рентгеновских картин" не балуют оригинальностью, и будь они обычными рисунками или фотографиями, то не вызвали бы никакого интереса у зрителя, в свете рентгеновских лучей все выглядит совсем иначе. И мы не просто видим на картинах персонажей, - мы как будто смотрим сквозь них, как будто нам открывается дверь в другое "настоящее", где никто из нас до сих пор не был, а лишь только догадывался о его существовании.





Так, вместо развеселого свадебного застолья мы видим двух пирующих скелетов, похожи на призраков и двое влюбленных, чьи языки ласкают друг друга, свою лысую черепушку рассматривает в зеркало существо, похожее на женскую версию Кощея Бессмертного, в бестелесную фигуру превращается старушка, мирно покачивающаяся в своем кресле... В таком стиле сделаны все необычные рентгеновские картины Бенедетты Боничи (Benedetta Bonichi). Все эти люди на самом деле живы, вот только выглядят они так, словно пришли с того света напомнить о себе родным и близким, либо же завершить то, что не удалось довести до конца при жизни.




Первая выставка художественных произведений Бенедетты Боничи состоялась в 2002 году, за что она была удостоена серебряного почетного знака президента Италии Карло Адзельо Чампи за развитие современного итальянского искусства. Картины художницы представлены в арт-галереях, музеях и на выставках в Париже, Нью-Йорке, Риме, городах Германии, США, Великобритании, а также находятся в частных коллекциях ценителей нестандартного арта по всему миру. С творчеством автора можно познакомиться на ее интернет-сайте .

Сильченко Т.Н.

1. Рентгеновские лучи и картина

Днем открытия Рентгеном «нового рода лучей» считается 8 ноября 1895 г. Уже в следующем году Рентген с помощью открытых лучей исследовал, наряду с другими материалами, различные пигменты. Одновременно некоторым физикам удавалось получать на рентгенограммах контуры изображений на картине. Это были первые лабораторные опыты, практическое применение для исследования картин рентгеновских лучей начинается в конце первой четверти XX в. и завоевывает должное место среди других методов исследования материальной части картин лишь постепенно и не без возражений. Высказывались мнения, что время и средства, затрачиваемые на рентгеновское исследование, не окупаются теми результатами, которые они дают, что рентгеновские лучи могут нанести вред картине. Главной причиной таких и подобных им возражений было неумение полностью использовать результаты исследования и недостаточное знание физико-химических свойств как рентгеновских лучей, так и самой картины. В настоящее время окончательно установлено, как теоретически — на основе глубокого изучения природы рентгеновских лучей, так и практически — на основании тщательной проверки на опыте, что доза рентгеновских лучей даже в миллион раз большая, чем та, которая (в среднем) нужна для получения снимка с картины, не причиняет ей никакого вреда и никак не может отразиться на дальнейшем ее существовании. На первых порах препятствием для широкого внедрения в музейную практику рентгеновского метода исследования были несовершенство необходимой аппаратуры, высокая стоимость и сложность ее использования, требовавшая участия в то время малочисленных специалистов-рентгенологов. Ныне все эти осложнения отпали, и только инертностью музейных работников можно объяснить то, что ценнейший метод исследования еще не вошел в повседневную практику всех советских музеев и реставрационных мастерских так же крепко, как он вошел в медицину и в другие области науки и техники. Особо большую ценность приобретает исследование картин рентгеновскими лучами, если оно производится параллельно с исследованием в ультрафиолетовых лучах (люминесцентным методом), иногда и с помощью бинокулярной лупы. Такое комплексное исследование, обнаруживая то, что скрыто внутри картины и что не видно в обычном свете на ее поверхности, дает ценнейшие данные о материальной части картины, необходимые не только реставратору, но и искусствоведу, художнику и хранителю. Другие методы, например химический анализ, так же могут с успехом применяться для исследования картин, но они требуют особого оборудования и специалистов; необходимость таких исследований возникает в исключительных случаях; внедрение их в повседневную практику музейных работников в той степени, как это должно быть с рентгеновским и люминесцентным методами, менее необходимо; поэтому в настоящей статье речь идет лишь об этих двух методах.

Данные о природе рентгеновских лучей и об их физико-химических свойствах можно найти не только в поистине необъятной литературе — научной и популярной, но и в любом современном учебнике физики. Техника практического использования их в различных областях подробно излагается в соответствующих руководствах, поэтому в настоящей статье очень кратко приводятся основные положения, имеющие непосредственное отношение к практике исследования картин.

Применение рентгеновских лучей для исследования картин основано на том, что лучи, проходя через картину, при благоприятных условиях дают изображение на флюоресцирующем экране или снимок на фотопленке. Практика подсказывает пользоваться только снимками, а не просвечиванием, потому что: 1) при просвечивании нельзя уловить, а тем более запомнить все мельчайшие детали, какие фиксируются на снимках; 2) при исследовании больших картин технически трудно пользоваться экраном; 3) проводить просвечивание возможно только в полной темноте, экран же, твердый и тяжелый (благодаря свинцовому стеклу), необходимо плотно прижимать к картине, что может повести к повреждению ее; 4) рентгеновский снимок является объективным документом, всегда готовым для демонстрации, сопоставления и сравнения с рядом других снимков, а это чрезвычайно важно при изучении как одной картины, так, в особенности, серии картин, например при изучении техники того или иного мастера или школы. Накопление архива рентгеновских снимков картин является одной из важнейших задач каждого большого музея.

По волновой теории света рентгеновские лучи представляют собой электромагнитные колебания с длиной волн от 725 до 0,10 А°. 1 От длины волн в значительной степени зависят свойства рентгеновских лучей и, в частности, их проникающая способность: чем волны короче, тем больше проникающая сила лучей, или, как принято говорить, они жестче, и, наоборот, чем длиннее волны, тем меньше их проникающая сила, — они мягче. Определение «жесткие» и «мягкие» лучи условно и недостаточно характеризует действительные свойства данного пучка лучей: мягкие для одной цели, могут оказаться слишком жесткими для другой. Обозначение в длинах волн имеет научное значение. В практике при пользовании трубками с накаленным катодом принято определять жесткость киловольтажем, т. е. тем напряжением электрического тока, которое подается на трубку, так как в зависимости от него изменяются длины волн в излучаемом пучке, и этим обусловливается проникающая способность: чем выше киловольтаж, тем жестче лучи. Выбор той или иной жесткости определяется прозрачностью исследуемого предмета для рентгеновских лучей. Для некоторого пояснения можно сказать, что для исследования различных металлических изделий требуются жесткие лучи, для исследования человеческого тела — средние, Для исследования картин — мягкие (около 30 киловольт). Пучок рентгеновских лучей состоит из смеси лучей различной длины волн (подобно видимому «белому» свету), причем самые короткие соответствуют высоте приложенного киловольтажа, а самые длинные (при работе с обычной диагностической трубкой) — тем, которые образуются при 15 киловольтах, так как лучи более мягкие отфильтровываются стеклянной стенкой трубки.

При прохождении пучка лучей через какой-либо предмет (например, картину) мягкие лучи задерживаются в большей степени, чем жесткие, благодаря чему происходит не только общее количественное ослабление, но изменяется и соотношение мягких и жестких лучей в пучке в сторону процентного увеличения количества жестких лучей. Практически ослабление интенсивности, т. е. разница между той интенсивностью лучей, с какой они вышли из трубки, и той, с какой они, пройдя через снимаемый объект, подействуют на фотопленку, зависит от химического состава объекта и его толщины: ослабление пропорционально 4-й степени порядкового номера элемента по таблице Менделеева и 3-й степени длины волны; причем ослабление быстро увеличивается с увеличением толщины слоя вещества, через которое лучи проходят, в особенности при мягких лучах.

На картине разница толщины различных участков в большинстве случаев не особенно велика и на задерживании рентгеновских лучей при получении снимка сказывается в меньшей степени, чем химический состав тех материалов, из которых она построена; например, даже толстый слой (в масштабах картины) охры задерживает рентгеновские лучи значительно слабее, чем тонкий слой свинцовых белил или чистого золота. Это становится понятным, если учитывать, что задерживающая способность определяется не просто порядковым номером элемента, а его 4-й степенью. Например, соотношение порядковых номеров железа (26) и свинца (82) будет всего лишь около 1:3, а соотношение их 4-х степеней будет около 1:110, так же для цинка (30) и свинца (82) соотношение их 4-х степеней будет приблизительно 1: 56.

кальция (20) и

серебра (47)

золота (79)

(в таблице приведены металлы, соединениями которых являются пигменты, наиболее часто употребляемые в живописи).

Для того чтобы определить, насколько значительно будет задерживать рентгеновские лучи вещество, состоящее из нескольких элементов (а все материалы, из которых строится картина, именно таковы), надо было бы подсчитать сумму задерживающей силы каждого элемента и его количество. Разумеется, в практике исследования картин подобных расчетов не приходится делать, хотя бы потому, что не бывает известен точный химический состав красок и их соотношения на том или ином участке картины (при смешении или наложении их друг на друга). Вышеприведенные сведения даны лишь для того, чтобы показать, какие свойства материалов, из которых строится картина, создают наиболее благоприятные условия для получения четкого, богатого деталями рентгеновского снимка и какую технику съемки надо применять.

Как объект для рентгеновского снимка, картина по сравнению с другими объектами имеет следующие преимущества: небольшую толщину и плоскую поверхность; неподвижность, относительную прозрачность для рентгеновских лучей. Благодаря этому, при правильной технике можно получить максимальную для данной картины контрастность и резкость снимка, потому что: 1) почти полностью исключается действие рассеянных лучей, а также «смазанность» рисунка от движения объекта при любой длительности экспозиции; 2) можно обеспечить плотное и равномерное прилегание пленки; 3) используются мягкие лучи, которые дают наибольшую контрастность снимка. Неблагоприятные же условия создаются в том случае, если картина выполнена красками, задерживающими лучи слабее, чем ее основа или грунт, или мало различающимися между собой по прозрачности для рентгеновских лучей. У большинства картин, в особенности старых мастеров, грунт, благодаря отсутствию или малому количеству в нем свинцовых красок, довольно прозрачен для рентгеновских лучей.

Краски, обычные в темперной и масляной живописи, практически (условно) можно разделить на четыре группы:

1. Органические (крапплаки, черные, например сажа).

2. Производные металлов с малым порядковым номером или с небольшим процентным содержанием металла (охры и т. п.).

3. Производные металлов со средними порядковыми номерами (цинковые, медные).

4. Производные тяжелых металлов (свинца, ртути).

Для лучей той жесткости, которая применяется при исследовании картин и при обычной толщине слоя красок, первые две группы, как и связующее и покровные лаки, полностью проходимы для рентгеновских лучей и на рентгенограммах дают участки максимальной для данного снимка плотности. Краски третьей группы задерживают лучи довольно слабо и только при достаточной толщине слоя они создают общий фон снимка средней плотности («серый») без резких границ, со слабо выраженными светотенями (полутонами). На этом фоне с различной четкостью выступают более темные места, соответствующие участкам картины, выполненным первой или второй группой, и более светлые, иногда совсем прозрачные, соответствующие деталям, выполненным красками четвертой группы.

Исключительно большую роль играют свинцовые белила. Из всех красок они наиболее значительно задерживают рентгеновские лучи; к тому же редко можно найти картину, которая не содержала бы свинцовых белил или в чистом виде, или в виде «разбела», т. е. в смешении с другими красками (только в более поздних картинах — с начала второй четверти XIX в. — свинцовые белила иногда частично или полностью заменяются цинковыми). Поэтому полнота изображения картины на рентгеновском снимке бывает обусловлена почти исключительно количеством и распределением на ней свинцовых белил. Очень большое влияние на характер снимка (в смысле воспроизведения изображения) оказывает и техника живописи: при послойном письме, когда предварительно прописывался подмалевок, с подробностями в деталях и светотенях, с применением свинцовых белил, а затем уже покрывался лессировками, на рентгенограмме получается воспроизведение картины, близкое к обычной фотографии (а иногда даже более детализированное). При однослойной технике, когда необходимый цвет или оттенок получается смешением красок на палитре, снимок может не давать четких контуров и богатых контрастов. Отсюда понятна большая роль подмалевка — именно от него зависит та или иная полнота изображения на снимке; лессировки, выполненные обычно очень тонким слоем и красками, прозрачными для рентгеновских лучей (и обычного света), на рентгеновском снимке теней не дают.

  • Промышленные рентгеновские аппараты и установки
    • Многофункциональная передвижная рентгеновская установка ПРДУ
    • Передвижная рентгеновская диагностическая установка ПРДУ "КРОС"
    • Рентгеновские аппараты для решения различных задач (50-200 КВ)
  • Цифровые системы визуализации

ЗАО «Электронная Техника - Медицина» (ЗАО "ЭЛТЕХ-Мед")

Рентгенография картины или история одного портрета

Пример того, насколько комплексными и требующими вовлечения специалистов самых разных специализаций, являются реставрации живописных произведений, наглядно демонстрирует работа с одной из картин, принадлежащей школе №206 города Санкт-Петербурга. Причиной обращения за помощью к специалистам - сотрудникам Санкт-Петербургской государственной художественно-промышленной академии - стало повреждение полотна. Согласно регламенту, в ходе реставрации проводятся следующие работы:

  • исследование (как для оценки художественной ценности, так и с целью получить объективные данные о структуре слоев краски, фактах проведения реставрационных и иных работ с картиной);
  • консервация;
  • собственно реставрация - восстановление полотна;
  • хранение - обеспечение условий, при которых старение материалов полотна и красок максимально замедляется.

Рентген картины в исследовании

Исследование предполагает как визуальное обследование (проводится реставратором), так проведение специальных видов съемок. Для диагностики повреждений, получения данных о структуре и количестве слоев полотна, получения информации, которая может помочь в определении авторства, способов восстановления картины, используются:

  • съемка в УФ- и ИК-лучах;
  • спектральный анализ;
  • рентгеновская съемка.

Комплекс исследований дает возможность восстановить и историю живописного произведения. Выявление скрытых слоев краски без повреждения более поздних - одна из задач, которую решает рентгенография картин.

Как рентгенография картины помогла найти неизвестный портрет

В случае работы с полотном из 206-й школы Санкт-Петербурга рентген картины не только подтвердил предположение специалиста-реставратора о втором (скрытом) изображении, но и позволил определить его автора. А впоследствии и восстановить обе картины - чуть больше чем за три года.

Сюжет полотна - В. И. Ленин на фоне Петропавловской крепости. Повреждения - сквозные разрывы - были лишь в нижней части картины. Они привлекли внимание реставратора, который предположил, что слой краски с изнанки полотна, может скрывать самостоятельное изображение.

Что скрывал слой водорастворимой серо-белой краски на тыльной стороне полотна, позволил определить рентген картины. На снимке был виден портрет Николая Второго и подпись автора - Ильи Галкина. В числе его работ были и другие портреты последнего императора Российской Империи и членов императорской семьи (в частности - портреты императрицы Александры Федоровны и Марии Федоровны, вдовствующей императрицы, матери государя), созданные в последнее десятилетие 19-го века. Точная дата написания портрета - 1896 год: картина была заказана Петровским коммерческим училищем, которое впоследствии стало 206-й школой: сначала Ленинграда, а потом и Санкт-Петербурга. Портрет же В. И. Ленина на полотне 1,8 на 2,7 метра был создан, ориентировочно, спустя 28 лет - в 1924 году. Известный живописец и график Владислав Матвеевич Измайлович, выпускник Центрального училища технического рисования барона А. Л. Штиглица (впоследствии - одноименной государственной художественно-промышленной академии) должен был написать новый портрет поверх портрета за авторством Ильи Галкина. Однако художник поступил по-своему - скрыв картину 1896 года, а портрет В.И. Ленина написав на тыльной стороне полотна.

Для каждого художника картина, это его дитя, но если ребенка очень трудно изменить, с картинами это сделать гораздо проще. В искусстве существует термин "пентименто", когда художник вносит изменения в свою картину. Это довольно распространенная практика, которой пользуются художники на протяжении всей истории. Обычно пентименто нельзя увидеть обычным глазом, и на помощь приходит рентген. Предлагаем вам 5 классических картин, скрывающие невероятные тайны, некоторые из которых пугающие.

Кит на картине Хендрика ван Антониссена "Пляжная сцена"

После того как картина голландского художника 17 века попала в общественный музей, её держатель заметил в ней нечто необычное. С чего вдруг так много людей находятся на пляже без видимой на то причины? Во время снятия первого слоя картины правда вышла наружу. На самом деле изначально художник нарисовал на пляже тушу кита, которая в последствии была закрашена. Ученые считают, что она была закрашена в эстетических целях. Не многие бы захотели иметь у себя дома картину мертвого кита.

Скрытая фигура на картине Пабло Пикассо "Старый гитарист"

У Пикассо в жизни был очень тяжелый период, когда у него не было денег даже на новые полотна, поэтому ему приходилось рисовать новые картины поверх старых, многократно перекрашивая их. Так было и в случае старого гитариста.

При очень внимательном рассмотрении картины можно увидеть очертания другого человека. Рентген показал, что ранее это была картина, на которой была изображена женщина с ребенком в сельской местности

Таинственное исчезновение римского короля

Портрет "Жак Марке, барон де Монбретон де Норвен" художника по имени Жан Огюст Доминик Энгр, является одним из самых ярких представителей политического пентименто. На данном полотне вы можете видеть портрет начальника полиции Рима, но раньше на этом полотне было написано нечто другое.

Ученые считают, что после завоевания Рима Наполеоном, на этом полотне красовался бюст сына Наполеона, которого он сам провозгласил королем Рима. Но после того, как Наполеон потерпел поражение, бюст его сына был успешно закрашен

Мертвый ребенок или корзина с картофелем?

Вы можете видеть на картине французского художника Жан-Франсуа Милле под названием "L"Angelus" 1859 года, двух крестьян, которые стоят посреди поля и скорбно смотрят на корзину с картофелем. Однако, когда картина была изучена при помощи рентгена выяснилось, что раньше на месте корзины был небольшой гроб с маленьким ребенком.

Рентген был сделан не случайно. Сальвадор Дали настаивал на рентгене, утверждая что на картине изображена похоронная сцена. В конце концов Лувр неохотно сделал рентген картины, и предчувствие Сальвадора Дали было оправдано

Картина "Подготовка невесты", это не то чем кажется

Картина "Подготовка невесты" на самом деле является незаконченной картиной. Данная картина была частью серии, изображающей традиции французской сельской жизни Гюстава Курбе. Она была написана в середине 1800-ых годов и приобретена музеем в 1929 году.

В 1960 году картина была изучена с помощью рентгена и то, что обнаружили ученые, повергло их в шок. Первоначально картина изображала сцену похорон, и женщина, находящаяся в центре картины была мертвой.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама