THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Применение электронно-лучевой трубки

Электронно-лучевые трубки применяются в осциллографах для измерения напряжения и фазовых углов, анализа формы кривой силы тока или напряжения и т. д. Эти трубки используются в телевизионных и радиолокационных установках.

Электронно-лучевые трубки бывают разных типов. По способу получения электронного луча они делятся на трубки с холодным и накаленным катодом. Трубки с холодным катодом используются сравнительно редко, так как для их работы требуются очень высокие напряжения (30-70 кВ). Трубки с накаленным катодом имеют широкое применение. Эти трубки по способу управления электронным лучом также разделяются на два вида: электростатические и магнитные. В электростатических трубках управление электронным лучом осуществляется с помощью электрического поля, а в магнитных - с помощью магнитного поля.

Электронно-лучевые трубки с электростатическим управлением применяются в осциллографах и бывают чрезвычайно разнообразны по конструктивному выполнению. Учащихся достаточно ознакомить с принципом устройства такой трубки, содержащей основные типовые элементы. Этим целям отвечает трубка типа 13ЛОЗ7, которая представлена на таблице с некоторыми упрощениями.

Электронно-лучевая трубка представляет собой хорошо вакуумированный стеклянный баллон, внутри которого находятся электроды. Широкий торец трубки - экран - с внутренней стороны покрывается флуоресцирующим веществом. Вещество экрана светится при ударах электронов. Источником электронов служит катод косвенного накала. Катод состоит из нити накала 7, вставленной в тонкую фарфоровую трубочку (изолятор), на которую надет цилиндр 6 с оксидным покрытием торца (катод), благодаря чему достигается излучение электронов только в одном направлении. Вылетевшие из катода электроны устремляются к анодам 4 и 3, имеющим довольно высокий потенциал относительно катода (несколько сотен вольт). Для придания пучку электронов формы луча и его фокусировки на экране пучок проходит через ряд электродов. Однако следует обратить внимание уча-щихся только на три электрода: модулятор (управляющий цилиндр) 5, первый анод 4 и второй анод 3. Модулятор представляет собой трубчатый электрод, на который подается отрицательный потенциал относительно катода. Благодаря этому проходящий через модулятор электронный пучок будет стягиваться в узкий пучок (луч) и направляться электрическим полем через отверстие в аноде в сторону экрана. Повышая или понижая потенциал управляющего электрода, можно регулировать коли-чество электронов в луче, т. е. интенсивность (яркость) свечения экрана. С помощью анодов не только создается ускоряющее поле (обеспечивается разгон электронов), но, изменяя потенциал одного из них, можно более точно фокусировать электронный луч на экране и получить большую резкость светящейся точки. Обычно фокусировку осуществляют путем изменения потенциала первого анода, который называется фокусирующим.

Электронный луч, выйдя из отверстия в аноде, проходит между двумя парами отклоняющих пластин 1,2 и попадает на экран, вызывая его свечение.

Подавая напряжение на отклоняющие пластины, можно вызвать отклонение луча и смещение светящегося пятна от центра экрана. Величина и направление смещения зависят от напряжения, поданного на пластины, и полярности пластин. На таблице показан случай, когда напряжение подано только на вертикальные пластины 2. При указанной полярности пластин смещение электронного луча под действием сил электрического поля происходит вправо. Если подать напряжение на го-ризонтальные пластины 1, то смещение луча будет происходить в вертикальном направлении.

В нижней части таблицы приведен способ управления лучом с помощью магнитного поля, созданного двумя взаимно перпендикулярными катушками (каждая катушка разделена на две секции), оси которых имеют вертикальное и горизонтальное направления. На таблице показан случай, когда в горизонтальной катушке ток отсутствует и вертикальная катушка обеспечивает смещение луча только в горизонтальном направлении.

Магнитное поле горизонтальной катушки вызывает смещение луча в вертикальном направлении. Совместное действие магнитных полей двух катушек обеспечивает движение луча по всему экрану.

Магнитные трубки применяются в телевизорах.

После отклоняющей системы электроны попадают на экран ЭЛТ. Экран представляет тонкий слой люминофора, нанесенного на внутреннюю поверхность торцевой части баллона и способного интенсивно светиться при бомбардировке электронами.

В ряде случаев поверх слоя люминофора наносится проводящий тонкий слой алюминия. Свойства экрана определяются его

характеристиками и параметрами. К основным параметрам экранов относятся: первый и второй критические потенциалы экрана , яркость свечения , световая отдача , длительность послесвечения.

Потенциал экрана. При бомбардировке экрана потоком электронов с его поверхности возникает вторичная электронная эмиссия. Для отвода вторичных электронов стенки баллона трубки вблизи экрана покрываются проводящим графитовым слоем, который соединяется со вторым анодом. Если этого не делать, то вторичные электроны, возвращаясь на экран, вместе с первичными будут понижать его потенциал. В этом случае в пространстве между экраном и вторым анодом создается тормозящее электрическое поле, которое будет отражать электроны луча. Таким образом, для устранения тормозящего поля от поверхности непроводящего экрана необходимо отводить электрический заряд, переносимый электронным лучом. Практически единственным путем компенсации заряда является использование вторичной эмиссии. При падении электронов на экран их кинетическая энергия преобразуется в энергию свечения экрана, идет на его нагрев и вызывает вторичную эмиссию. Величина коэффициента вторичной эмиссии о определяет потенциал экрана. Коэффициент вторичной эмиссии электронов а = / в // л (/„ - ток вторичных электронов, / л - ток луча, или ток первичных электронов) с поверхности экрана в широком диапазоне изменения энергии первичных электронов превышает единицу (рис. 12.8, о < 1 на участке О А кривой при V < С/ кр1 и при 15 > С/ кр2).

При и < (У кр1 число уходящих-от экрана вторичных электронов меньше числа первичных, что приводит к накоплению отрицательного заряда на экране, формированию тормозящего поля для электронов луча в пространстве между вторым анодом и экраном и их отражению; свечение экрана отсутствует. Потенциал и л2 = Г/ крР соответствующий точке А на рис. 12.8, называется первым критическим потенциалом.

При С/ а2 = £/ кр1 потенциал экрана близок к нулю.

Если энергия пучка становится больше е£/ кр1 , то о > 1 и экран начинает заряжаться поло-

Рис. 12.8

жительно относительно последнего анода прожектора. Процесс продолжается до тех пор, пока потенциал экрана не станет приблизительно равным потенциалу второго анода. Это означает, что число уходящих с экрана электронов равно числу падающих. В диапазоне изменения энергии пучка от е£/ кр1 до С/ кр2 с > 1 и потенциал экрана достаточно близок к потенциалу анода прожектора. При и &2 > Н кр2 коэффициент вторичной эмиссии а < 1. Потенциал экрана вновь снижается, и у экрана начинает формироваться тормозящее для электронов луча поле. Потенциал и кр2 (соответствует точке В на рис. 12.8) называют вторым критическим потенциалом или предельным потенциалом.

При энергиях электронного луча выше е11 кр2 яркость свечения экрана не увеличивается. Для различных экранов Г/ кр1 = = 300...500 В, и кр2 = 5...40 кВ.

При необходимости получения больших яркостей потенциал экрана с помощью проводящего покрытия принудительно поддерживают равным потенциалу последнего электрода прожектора. Проводящее покрытие электрически соединено с этим электродом.

Светоотдача. Это параметр, который определяет отношение силы света J cв, излучаемого люминофором нормально поверхности экрана, к мощности электронного луча Р эл, падающего на экран:

Светоотдача ц определяет КПД люминофора. Не вся кинетическая энергия первичных электронов превращается в энергию видимого излучения, часть идет на нагревание экрана, вторичную эмиссию электронов и на излучение в инфракрасном и ультрафиолетовом диапазонах спектра. Светоотдачу измеряют в канделах на ватт: для различных экранов она изменяется в пределах 0,1... 15 кд/Вт. При малых скоростях электронов свечение возникает в поверхностном слое и часть света поглощается люминофором. С увеличением энергии электронов светоотдача возрастает. Однако при очень больших скоростях многие электроны пробивают слой люминофора, не производя возбуждения, и происходит снижение светоотдачи.

Яркость свечения. Это параметр, который определяется силой света, излучаемого в направлении наблюдателя одним квадратным метром равномерно светящейся поверхности. Яркость измеряют в кд/м 2 . Она зависит от свойств люминофора (характеризуется коэффициентом А), плотности тока электронного луча у, разности потенциалов между катодом и экраном II и минимального потенциала экрана 11 0 , при котором еще наблюдается люминесценция экрана. Яркость свечения подчиняется закону

Значения показателя степени п у потенциала £/ 0 для разных люминофоров изменяются в пределах соответственно 1...2,5 и

30...300 В. На практике линейный характер зависимости яркости от плотности тока у сохраняется примерно до 100 мкА/см 2 . При больших плотностях тока люминофор начинает нагреваться и выгорать. Основной способ повышения яркости - увеличение и.

Разрешающая способность. Этот важный параметр определяется как свойство ЭЛТ воспроизводить детали изображения. Разрешающая способность оценивается числом отдельно различимых светящихся точек или линий (строк), приходящихся соответственно на 1 см 2 поверхности или на 1 см высоты экрана, либо на всю высоту рабочей поверхности экрана. Следовательно, для увеличения разрешающей способности необходимо уменьшать диаметр луча, т. е. требуется хорошо сфокусированный тонкий луч диаметром в десятые доли мм. Разрешающая способность тем выше, чем меньше ток луча и больше ускоряющее напряжение. В этом случае реализуется наилучшая фокусировка. Разрешающая способность также зависит от качества люминофора (крупные зерна люминофора рассеивают свет) и наличия ореолов, возникающих из-за полного внутреннего отражения в стеклянной части экрана.

Длительность послесвечения. Время, в течение которого яркость свечения уменьшается до 1% от максимального значения, называется временем послесвечения экрана. Все экраны разделяются на экраны с очень коротким (менее 10 5 с), коротким (10“ 5 ...10“ 2 с), средним (10 2 ...10 1 с), длительным (10 Ч.Лб с) и очень длительным (более 16 с) послесвечением. Трубки с коротким и очень коротким послесвечением широко применяются при осциллографировании, а со средним послесвечением - в телевидении. В радиолокационных индикаторах обычно используются трубки с длительным послесвечением.

В радиолокационных трубках часто применяют длительно светящиеся экраны, имеющие двухслойное покрытие. Первый слой люминофора - с коротким послесвечением синего цвета - возбуждается электронным лучом, а второй - с желтым цветом свечения и длительным послесвечением - возбуждается светом первого слоя. В таких экранах удается получить послесвечение до нескольких минут.

Типы экранов. Очень большое значение имеет цвет свечения люминофора. В осциллографической технике при визуальном наблюдении экрана используются ЭЛТ с зеленым свечением, наименее утомительным для глаза. Таким цветом свечения обладает ортосиликат цинка, активированный марганцем (вилле- мит). Для фотографирования предпочтительны экраны с синим цветом свечения, свойственным вольфрамату кальция. В приемных телевизионных трубках с черно-белым изображением стараются получить белый цвет, для чего применяются люминофоры из двух компонентов: синего и желтого.

Для изготовления покрытий экранов широко применяют также следующие люминофоры: сульфиды цинка и кадмия, силикаты цинка и магния, окислы и оксисульфиды редкоземельных элементов. Люминофоры на основе редкоземельных элементов обладают целым рядом достоинств: они более стойки к различным воздействиям, чем сульфидные, достаточно эффективны, имеют более узкую спектральную полосу излучения, что особенно важно в производстве цветных кинескопов, где необходима высокая чистота цвета и т. д. В качестве примера можно привести сравнительно широко используемый люминофор на основе окисла иттрия, активированного европием У 2 0 3: Ей. Этот люминофор имеет узкую полосу излучения в красной области спектра. Хорошими характеристиками обладает также люминофор, состоящий из оксисульфида иттрия с примесью европия У 2 0 3 8: Ей, который имеет максимум интенсивности излучения в красно-оранжевой области видимого участка спектра и лучшую химическую стойкость, чем У 2 0 3: Еи-люминофор.

Алюминий химически инертен при взаимодействии с люминофорами экранов, легко наносится на поверхность испарением в вакууме и хорошо отражает свет. К недостаткам алюминированных экранов можно отнести то, что алюминиевая пленка поглощает и рассеивает электроны с энергией меньше 6 кэВ, поэтому в этих случаях светоотдача резко падает. Например, светоотдача алюминированного экрана при энергии электронов в 10 кэВ примерно на 60% больше, чем при 5 кэВ. Экраны трубок имеют прямоугольную или круглую форму.

Федеральное агентство по образованию

Кузбасская государственная педагогическая академия

Кафедра автоматизации производственных процессов

Реферат

по радиотехнике

Тема: Осциллографическая электронно-лучевая трубка. Передающие телевизионные трубки

    Электронно-лучевые индикаторы

1.1 Основные параметры ЭЛТ

1.2 Осциллографические электронные трубки

II. Передающие телевизионные трубки

2.1 Передающие телевизионные трубки с накоплением зарядов

2.1.1 Иконоскоп

2.1.2 Супериконоскоп

2.1.3 Ортикон

2.1.4 Суперортикон

2.1.5 Видикон

Список используемой литературы

I . Электронно-лучевые индикаторы

Электронно-лучевым называют электронный электровакуумный прибор, в котором используется поток электронов, сконцентрированный в форме луча или пучка лучей.

Электронно-лучевые приборы, имеющие форму трубки, вытянутой в направлении луча, называют электронно-лучевыми трубками (ЭЛТ). Источником электронов в ЭЛТ подогревный катод. Эмитированные катодом электроны собираются в узкий луч электрическим или магнитным полем специальных электродов или катушек с током. Электронный луч фокусируется на экране, для изготовления которого внутреннюю сторону стеклянного баллона трубки покрывают люминофором – веществом, способным светиться при бомбардировке его электронами. Положением видимого сквозь стекло баллона пятна на экране можно управлять, отклоняя поток электронов путём воздействия на него электрического или магнитного поля специальных (отклоняющих) электродов или катушек с током. Если формирование электронного луча и управление им осуществляется с помощью электростатических полей, то такой прибор называют ЭЛТ с электростатическим управлением. Если для этих целей используют не только электростатические, но и магнитные поля, то прибор называют ЭЛТ с магнитным управлением.

Схематическое изображение электронно-лучевой трубки






Рис.1

На рис.1 схематически показано устройство ЭЛТ. Элементы трубки размещены в стеклянном баллоне, из которого откачан воздух до остаточного давления 1-10 мкПа. Кроме электронной пушки, включающей в себя катод 1, сетку 2 и ускоряющий электрод 3, в электронной лучевой трубке есть магнитная отклоняющая и фокусирующая система 5 и отклоняющие электроды 4, позволяющие направить пучок электронов в различные точки внутренней поверхности экрана 9, имеющего металлическую анодную сетку 8 с проводящим слоем люминофора. Напряжение на сетку анода с люминофором подается через высоковольтный ввод 7. Пучок электронов, падающих с большой скоростью на люминофор, вызывает его свечение, и на экране можно видеть светящееся изображение пучка электронов.

Современные фокусирующие системы обеспечивают диаметр светящегося пятна на экране менее 0,1 мм. Вся система электродов, формирующих электронный луч, крепится на держателях (траверсах) и образует единое устройство, называемое электронам прожектором. Для управления положением светящегося пятна на экране применяют две пары специальных электродов - отклоняющих пластин, расположенных взаимно перпендикулярно. Изменяя разность потенциалов между пластинами каждой пары, можно изменять положение электронного луча во взаимно перпендикулярных плоскостях благодаря воздействию электростатических полей отклоняющих пластин на электроны. Специальные генераторы в осциллографах и телевизорах формируют линейно изменяющееся напряжение, которое подаётся на отклоняющие электроды и создает развертку изображения по вертикали и горизонтали. В результате на экране получают двумерную картину изображения.

ЭЛТ с магнитным управлением содержит такой же электронный прожектор, как и ЭЛТ с электростатическим управлением, за исключением второго анода. Вместо него применяют короткую катушку (фокусирующую) с током, надеваемую на горловину трубки вблизи первого анода. Неоднородное магнитное поле фокусирующей катушки, воздействуя на электроны, выполняет роль второго анода в трубке с электростатической фокусировкой.

Отклоняющая система в трубке с магнитным управлением выполняется в виде двух пар отклоняющих катушек, также размещаемых на горловине трубки между фокусирующей катушкой и экраном. Магнитные поля двух пар катушек взаимно перпендикулярны, что позволяет управлять положением электронного луча при изменении тока в катушках. Магнитные отклоняющие системы используют в трубках с высоким анодным потенциалом, необходимым для получения большой яркости свечения экрана, в частности в телевизионных приемных трубках - кинескопах. Поскольку магнитная отклоняющая система размещается вне баллона ЭЛТ, ее удобно вращать вокруг оси ЭЛТ, меняя положение осей на экране, что важно в некоторых применениях, например в радиолокационных индикаторах. С другой стороны, магнитная отклоняющая система инерционнее электростатической и не позволяет перемещать луч с частотой более 10-20 кГц. Поэтому в осциллографах - приборах, предназначенных для наблюдения на экране ЭЛТ изменений электрических сигналов во времени,- применяют трубки с электростатическим управлением. Заметим, что существуют ЭЛТ с электростатической фокусировкой и магнитным отклонением.

1.1 Основные параметры ЭЛТ

Цвет свечения экрана может быть |различным в зависимости от состава люминофора. Чаще других используют экраны с белым, зеленым, синим, фиолетовым цветом свечения, однако имеются ЭЛТ с желтым, голубым, красным, оранжевым цветом.

Послесвечение - время, необходимое для спадания яркости свечения от номинальной до первоначальной после прекращения электронной бомбардировки экрана. Послесвечение делится на пять групп: от очень короткого (менее 10 -5 с) до очень длительного (более 16 с).

Разрешающая способность - ширина светящейся сфокусированной линии на экране или минимальный диаметр светящегося пятна.

Яркость свечения экрана - сила света, испускаемого 1 м 2 экрана в направлении, нормальном к его поверхности. Чувствительность к отклонению - отношение смещения пятна па экране к значению отклоняющего напряжения или напряженности магнитного поля.

Существуют разные виды ЭЛТ: осциллографические ЭЛТ, приёмные телевизионные трубки, передающие телевизионные трубки и проч. В своей работе я рассмотрю устройство и принцип действия осциллографической ЭЛТ и передающих телевизионных трубок.

1.2 Осциллографические электронно-лучевые трубки

Осциллографические трубки предназначены для получения изображения электрических сигналов на экране. Обычно это ЭЛТ с электростатическим управлением, в которых для наблюдения применяют зеленый цвет свечения экрана, а для фотографирования - голубой или синий. Для наблюдения быстропротекающих периодических процессов служат ЭЛТ с повышенной яркостью свечения и коротким послесвечением (не более 0,01 с). Медленные периодические и однократные быстро протекающие процессы лучше наблюдать на экранах ЭЛТ с длительным послесвечением (0,1-16 с). Осциллографические ЭЛТ выпускаются с круглым и прямоугольным экранами размерами от 14x14 до 254 мм в диаметре. Для одновременного наблюдения двух процессов и более выпускаются многолучевые ЭЛТ, в которых смонтированы два (или более) независимых электронных прожектора с соответствующими отклоняющими системами. Прожекторы смонтированы так, что и оси пересекаются в центре экрана.

II . Передающие телевизионные трубки

Передающие телевизионные трубки и системы преобразуют изображения объектов передачи в электрические сигналы. По способу преобразования изображений объектов передачи в электрические сигналы, передающие телевизионные трубки и системы подразделяются на трубки и системы мгновенного действия и трубки с накоплением зарядов.

В первом случае величина электрического сигнала определяется тем световым потоком, который в данный момент времени падает или на катод фотоэлемента, или на элементарный участок фотокатода передающей телевизионной трубки. Во втором случае происходит преобразование световой энергии в электрические заряды на накопительном элементе (мишени) передающей телевизионной трубки в течении периода кадровой развертки. Распределение электрических зарядов на мишени соответствует распределению света и тени по поверхности передаваемого объекта. Совокупность электрических зарядов на мишени называется потенциальным рельефом. Электронный луч периодически обегает все элементарные участки мишени и списывает потенциальный рельеф. При этом на нагрузочном сопротивлении выделяется напряжение полезного сигнала. Трубки второго типа, т.е. с накопленной световой энергией, имеют больший КПД, чем трубки первого типа, поэтому они широко применяются в телевидении. Именно поэтому подробней я рассмотрю устройство и виды трубок второго типа.

      Передающие телевизионные трубки с накоплением зарядов

        Иконоскоп

Важнейшей частью иконоскопа (рис.1а) является мозаика, которая состоит из тонкого листка слюда толщиной 0,025 мм. На одну сторону слюды нанесено большое число изолированных друг от друга мелких серебряных зёрен 4, окисленных и обработанных в парах цезия.

Задачи работы

  1. общее знакомство с устройством и принципом действия электронных осциллографов,
  2. определение чувствительности осциллографа,
  3. проведение некоторых измерений в цепи переменного тока при помощи осциллографа.

Общие сведения об устройстве и работе электронного осциллографа

С помощью катода электронно-лучевой трубки осциллографа создается электронный поток, который формируется в трубке в узкий пучок, направленный к экрану. Сфокусированный на экране трубки электронный пучок вызывает в месте падения светящееся пятно, яркость которого зависит от энергии пучка (экран покрыт специальным люминесцирующим составом, светящимся под воздействием пучка электронов). Электронный луч является практически безынерционным, поэтому световое пятно можно практически мгновенно перемещать в любом направлении по экрану, если воздействовать на электронный пучок электрическим полем. Поле создается с помощью двух пар плоскопараллельных пластин, называемых отклоняющими пластинами. Малая инерционность луча обуславливает возможность наблюдения быстропеременных процессов с частотой 10 9 Гц и более.

Рассматривая существующие осциллографы, разнообразные по конструкции и назначению, можно увидеть, что функциональная схема их примерно одинакова. Основными и обязательными узлами должны быть:

Электронно-лучевая трубка для визуального наблюдения исследуемого процесса;

Источники питания для получения необходимых напряжений, подаваемых на электроды трубки;

Устройство для регулировки яркости, фокусировки и смещения луча;

Генератор развертки для перемещения электронного луча (и соответственно, светящегося пятна) по экрану трубки с определенной скоростью;

Усилители (и аттенюаторы), используемые для усиления или ослабления напряжения исследуемого сигнала, если оно недостаточно для заметного отклонения луча на экране трубки или, напротив, слишком велико.

Устройство электронно-лучевой трубки

Прежде всего, рассмотрим устройство электронно-лучевой трубки (рис. 36.1). Обычно это стеклянная колба 3, откачанная до высокого вакуума. В узкой ее части расположен нагреваемый катод 4, из которого вылетают электроны за счет термоэлектронной эмиссии Система цилиндрических электродов 5, 6, 7 фокусирует электроны в узкий пучок 12 и управляет его интенсивностью. Далее следуют две пары отклоняющих пластин 8 и 9 (горизонтальные и вертикальные) и, наконец, экран 10 – дно колбы 3, покрытое люминесцирующим составом, благодаря которому становится видимым след электронного луча.

В состав катода входит вольфрамовая нить – нагреватель 2, расположенная в узкой трубке, торец которой (для уменьшения работы выхода электронов) покрыт слоем окиси бария или стронция и собственно является источником потока электронов.

Процесс формирования электронов в узкий луч с помощью электростатических полей во многом напоминает действие оптических линз на световой луч. Поэтому система электродов 5,6,7 носит название электронно-оптического устройства.

Электрод 5 (модулятор) в виде закрытого цилиндра с узким отверстием находится под небольшим отрицательным потенциалом относительно катода и выполняет функции, аналогичные управляющей сетке электронной лампы. Изменяя величину отрицательного напряжения на модулирующем или управляющем электроде, можно изменять количество электронов, проходящих через его отверстие. Следовательно, с помощью модулирующего электрода можно управлять яркостью луча на экране. Потенциометр, управляющий величиной отрицательного напряжения на модуляторе, выведен на переднюю панель осциллографа с надписью ”яркость”.

Система из двух коаксиальных цилиндров 6 и 7, называемых первым и вторым анодами, служит для ускорения и фокусировки пучка. Электростатическое поле в промежутке между первым и вторым анодами направлено таким образом, что отклоняет расходящиеся траектории электронов снова к оси цилиндра, подобно тому, как оптическая система из двух линз действует на расходящийся пучок света. При этом катод 4 и модулятор 5 составляют первую электронную линзу, а первому и второму анодам соответствует другая электронная линза.

В итоге пучок электронов фокусируется в точке, которая должна лежать в плоскости экрана, что оказывается возможным при соответствующем выборе разности потенциалов между первым и вторым анодами. Ручка потенциометра, регулирующего это напряжение, выведена на переднюю панель осциллограф с надписью ”фокус”.

При попадании электронного луча на экран на нем образуется резко очерченное светящееся пятно (соответствующее сечению пучка), яркость которого зависит от количества и скорости электронов в пучке. Большая часть энергии пучка при бомбардировке экрана превращается в тепловую. Во избежание прожога люминесцирующего покрытия не допустима большая яркость при неподвижном электронном луче. Отклонение луча осуществляется с помощью двух пар плоскопараллельных пластин 8 и 9, расположенных под прямым углом друг к другу.

При наличии разности потенциалов на пластинах одной пары однородное электрическое поле между ними отклоняет траекторию пучка электронов в зависимости от величины и знака этого поля. Расчеты показывают, что величина отклонения луча на экране трубки D (в миллиметрах) связана с напряжением на пластинах U D и напряжением на втором аноде Ua 2 (в вольтах) следующим образом:

(36.1),

Как работает электронно-лучевая трубка?

Электронно-лучевые трубки - это электровакуумные приборы, в которых образуется электронный пучок малого поперечного сечения, причем электронный пучок может отклоняться в желаемом направлении и, попадая на люминесцентный экран, вызывать его свечение (рис. 5.24). Электронно-лучевая трубка является электронно-оптическим преобразователем, превращающим электрический сигнал в соответствующее ему изображение в виде импульсного колебания, воспроизводимого на экране трубки. Электронный пучок образуется в электронном прожекторе (или электронной пушке), состоящем из катода и фокусирующих электродов. Первый фокусирующий электрод, который называют также модулятором , выполняет функции сетки с отрицательным смещением, направляющей электроны к оси трубки. Изменение напряжения смещения сетки влияет на число электронов, а следовательно, на яркость получаемого на экране изображения. За модулятором (в направлении к экрану) расположены следующие электроды, задачей которых является фокусирование и ускорение электронов. Они действуют на принципе электронных линз. Фокусирующе-ускоряющие электроды называются анодами и на них подается положительное напряжение. В зависимости от типа трубки анодные напряжения имеют значения от нескольких сотен вольт до нескольких десятков киловольт.

Рис. 5.24. Схематическое изображение электронно-лучевой трубки:

1 - катод; 2 - анод I: 3 - анод II; 4 - горизонтальные отклоняющие пластины; 5 - электронный пучок; 6 - экран; 7 - вертикальные отклоняющие пластины; 8 - модулятор


В некоторых трубках фокусировку пучка производят с помощью магнитного поля путем использования катушек, расположенных снаружи лампы, вместо электродов, находящихся внутри трубки и создающих фокусирующее электрическое поле. Отклонение пучка также осуществляется двумя методами: с помощью электрического или магнитного поля. В первом случае в трубке помещают отклоняющие пластины, во втором - снаружи трубки монтируют отклоняющие катушки. Для отклонения как в горизонтальном, так и в вертикальном направлениях используют пластины (или катушки) вертикального или горизонтального отклонения луча.

Экран трубки покрыт изнутри материалом - люминофором, который светится под влиянием бомбардировки электронами. Люминофоры отличаются различным цветом свечения и разным временем свечения после прекращения возбуждения, которое называется временем послесвечения . Обычно оно составляет от долей секунды до нескольких часов в зависимости от назначения трубки.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама