THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

После того как найдено уравнение линейной регрессии, проводится оценка значимости как уравнения в целом, так и отдельных его параметров.

Оценка значимости уравнения регрессии в целом дается с помощью F-критерия Фишера. При этом выдвигается нулевая гипотеза, коэффициент регрессии равен нулю, то есть b=0, и, следовательно, фактор х не оказывает влияния на результат у. Непосредственному расчету F-критерия предшествует анализ дисперсии. Центральное место в нем занимает разложение общей суммы квадратов отклонений переменной у от среднего значения у на две части - «объясненную» и «необъясненную» (приложение 2).

Общая сумма квадратов отклонений индивидуальных значений результативного признака у от среднего значения у вызвана влиянием множества причин. Условно всю совокупность причин можно разделить на две группы:

  • · изучаемый фактор х
  • · прочие факторы

Если фактор не оказывает влияния на результат, то линия регрессии на графике параллельна оси охи у = y. Тогда вся дисперсия результативного признака обусловлена воздействием прочих факторов и общая сумма квадратов отклонений совпадает с остаточной. Если же прочие факторы не влияют на результат, то у связан с х функционально и остаточная сумма квадратов равна нулю. В этом случае сумма квадратов отклонений, объясненная регрессией, совпадает с общей суммой квадратов.

Поскольку не все точки поля корреляции лежат на линии регрессии, то всегда имеет место их разброс как обусловленный влиянием фактора х, то есть регрессией у по х, так и вызванный действием прочих величин (необъясненная вариация). Пригодность линии регрессии для прогноза зависит от того, какая часть общей вариации признака у приходится на объясненную вариацию. Очевидно, что если сумма квадратов отклонений, обусловленная регрессией, будет больше остаточной суммы квадратов, то уравнение регрессии статистически значимо и фактор х оказывает существенное влияние на результат у. Это равносильно тому, что коэффициент детерминации r 2 xy будет приближаться к единице.

Любая сумма квадратов отклонений связана с числом степеней свободы (df - degrees of freedom), то есть с числом свободы независимого варьирования признака. Число степеней свободы связано с числом единиц совокупности n и с числом определяемых по ней констант. Применительно к исследуемой проблеме число степеней свободы должно показать, сколько независимых отклонений из n возможных [(y 1 -y), (y 2 -y),…,(y n -y)] требуется для образования данной суммы квадратов. Так, для общей суммы квадратов?(y-y) 2 требуется (n-1) независимых отклонений.

При расчете объясненной или факторной суммы квадратов?(y x -y) 2 используются теоретические (расчетные) значения результативного признака y x , найденные по линии регрессии: y x =а+b*x.

В линейной регрессии сумма квадратов отклонений, обусловленных линейной регрессией, составит: ?(y x -y) 2 =b 2 *?(x -x) 2 .

Поскольку при заданном объеме наблюдений по х и у факторная сумма квадратов при линейной регрессии зависит только от одной константы коэффициента регрессии b, то данная сумма квадратов имеет одну степень свободы. К тому же выводу придем, если рассмотрим содержательную сторону расчетного значения признака у, то есть y x . Величина y x определяется по уравнению линейной регрессии: y x =а+b*x. Параметр а можно определить как: a=y-b*x. Подставив выражение параметра а в линейную модель получим:

y x = y-b*x+b*x= y-b*(х-х).

Отсюда видно, что при заданном наборе переменных у и х расчетное значение y x является в линейной регрессии функцией только одного параметра - коэффициента регрессии. Соответственно и факторная сумма квадратов отклонений имеет число степеней свободы, равное 1.

Существует равенство между числом степеней свободы общей, факторной и остаточной суммами квадратов. Число степеней свободы остаточной суммы квадратов при линейной регрессии составляет n-2. Число степеней свободы для общей суммы квадратов определяется числом единиц, и поскольку используется средняя вычисленная по данным выборки, то теряем одну степень свободы, то есть df общ = n-1.

Итак, имеется два равенства:

?(у-у) 2 =?(y x -у) 2 +?(у- y x) 2 ,

Разделив каждую сумму квадратов на соответствующее ей число степеней свободы, получим средний квадрат отклонений, или, что то же самое, дисперсию на одну степень свободы D.

D общ =?(у-у) 2 /(n-1);

D факт =?(y x -у) 2 /1;

D ост =?(у- y x) 2 /(n-1).

Определение дисперсии на одну степень свободы приводит дисперсии к сравнимому виду. Сопоставляя факторную и остаточную дисперсии в расчете на одну степень свободы, получим величину F-отношения (F-критерия):

F= D факт / D ост, где

F - критерий для проверки нулевой гипотезы Н 0: D факт =D ост.

Если нулевая гипотеза справедлива, то факторная и остаточная дисперсии не отличаются друг от друга. Для Н 0 необходимо опровержение, чтобы факторная дисперсия превышала остаточную в несколько раз.

Английским статистиком Снедекором разработаны таблицы критических значений F-отношений при разных уровнях существенности нулевой гипотезы и различимом числе степеней свободы.

Табличное значение F-критерия - это максимальная величина отношения дисперсий, которая может иметь место при случайном их расхождении для данного уровня вероятности наличия нулевой гипотезы.

Вычисленное значение F-отношения признается достоверным (отличным от единицы), если оно больше табличного.

В этом случае нулевая гипотеза об отсутствии связи признаков отклоняется и делается вывод о существенности этой связи: F факт >F табл. Н 0 отклоняется.

Если же величина окажется меньше табличной F факт

Оценку качества модели дает коэффициент детерминации. Коэффициент детерминации (R 2) -- это квадрат множественного коэффициента корреляции.

Он показывает, какая доля дисперсии результативного признака объясняется влиянием независимых переменных.

Формула для вычисления коэффициента детерминации:

y i -- выборочные данные, а f i -- соответствующие им значения модели.

Также это квадрат корреляции Пирсона между двумя переменными. Он выражает количество дисперсии, общей между двумя переменными.

Коэффициент принимает значения из интервала . Чем ближе значение к 1 тем ближе модель к эмпирическим наблюдениям.

В случае парной линейной регрессионной модели коэффициент детерминации равен квадрату коэффициента корреляции, то есть R 2 = r 2 .

Иногда показателям тесноты связи можно дать качественную оценку (шкала Чеддока) (приложение 3).

Функциональная связь возникает при значении равном 1, а отсутствие связи -- 0. При значениях показателей тесноты связи меньше 0,7 величина коэффициента детерминации всегда будет ниже 50 %. Это означает, что на долю вариации факторных признаков приходится меньшая часть по сравнению с остальными неучтенными в модели факторами, влияющими на изменение результативного показателя. Построенные при таких условиях регрессионные модели имеют низкое практическое значение.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

После того как найдено уравнение линейной регрессии, проводится оценка значимости как уравнения в целом, так и отдельных его параметров . Проверить значимость уравнения регрессии – значит установить, соответствует ли математическая модель, выражающая зависимость между переменными, экспериментальным данным и достаточно ли включенных в уравнение объясняющих переменных (одной или нескольких) для описания зависимой переменной. Чтобы иметь общее суждение о качестве модели из относительных отклонений по каждому наблюдению, определяют среднюю ошибку аппроксимации : Средняя ошибка аппроксимации не должна превышать 8–10%.

Оценка значимости уравнения регрессии в целом производится на основе F -критерия Фишера , которому предшествует дисперсионный анализ. Согласно основной идее дисперсионного анализа, общая сумма квадратов отклонений переменной y от среднего значения y раскладывается на две части – «объясненную» и «необъясненную»: где – общая сумма квадратов отклонений; – сумма квадратов отклонений, объясненная регрессией (или факторная сумма квадратов отклонений); – остаточная сумма квадратов отклонений, характеризующая влияние неучтенных в модели факторов. Определение дисперсии на одну степень свободы приводит дисперсии к сравнимому виду. Сопоставляя факторную и остаточную дисперсии в расчете на одну степень свободы, получим величину F -критерия Фишера: Фактическое значение F -критерия Фишера сравнивается с

табличным значением F табл(a; k 1; k 2) при уровне значимости a и степенях свободы k 1 = m и k 2= n -m -1.При этом, если фактическое значение F - критерия больше табличного, то признается статистическая значимость уравнения в целом.

Для парной линейной регрессии m =1, поэтому

Величина F -критерия связана с коэффициентом детерминации R2 ее можно рассчитать по следующей формуле:

В парной линейной регрессии оценивается значимость не только уравнения в целом, но и отдельных его параметров . С этой целью по каждому из параметров определяется его стандартная ошибка: m b и m a . Стандартная ошибка коэффициента регрессии определяется по формуле:, где

Величина стандартной ошибки совместно с t –распределением Стьюдента при n -2 степенях свободы применяется для проверки существенности коэффициента регрессии и для расчета его доверительного интервала. Для оценки существенности коэффициента регрессии его величина сравнивается с его стандартной ошибкой, т.е. определяется фактическое значение t -критерия Стьюдента: которое затем сравнивается с табличным значением при определенном уровне значимости a и числе степеней свободы (n-2). Доверительный интервал для коэффициента регрессии определяется как b ± t табл ×mb . Поскольку знак коэффициента регрессии указывает на рост результативного признака y при увеличении признака-фактора x (b >0), уменьшение результативного признака при увеличении признака-фактора (b <0) или его независимость от независимой переменной (b =0), то границы доверительного интервала для коэффициента регрессии не должны содержать противоречивых результатов, например, -1,5 £ b £ 0,8. Такого рода запись указывает, что истинное значение коэффициента регрессии одновременно содержит положительные и отрицательные величины и даже ноль, чего не может быть.

Стандартная ошибка параметра a определяется по формуле: Процедура оценивания существенности данного параметра не отличается от рассмотренной выше для коэффициента регрессии. Вычисляется t -критерий: , его величина сравнивается с табличным значением при n - 2 степенях свободы.


После того как уравнение регрессии построено и с помощью коэффициента детерминации оценена его точность, остается открытым вопрос за счет чего достигнута эта точность и соответственно можно ли этому уравнению доверять. Дело в том, что уравнение регрессии строилось не по генеральной совокупности, которая неизвестна, а по выборке из нее. Точки из генеральной совокупности попадают в выборку случайным образом, по этому в соответствии с теорией вероятности среди прочих случаев возможен вариант, когда выборка из “широкой” генеральной совокупности окажется “узкой” (рис. 15).

Рис. 15. Возможный вариант попадания точек в выборку из генеральной совокупности.

В этом случае:

а) уравнение регрессии, построенное по выборке, может значительно отличаться от уравнения регрессии для генеральной совокупности, что приведет к ошибкам прогноза;

б) коэффициент детерминации и другие характеристики точности окажутся неоправданно высокими и будут вводить в заблуждение о прогнозных качествах уравнения.

В предельном случае не исключен вариант, когда из генеральной совокупности представляющей собой облако с главной осью параллельной горизонтальной оси (отсутствует связь между переменными) за счет случайного отбора будет получена выборка, главная ось которой окажется наклоненной к оси. Таким образом, попытки прогнозировать очередные значения генеральной совокупности опираясь на данные выборки из нее чреваты не только ошибками в оценке силы и направления связи между зависимой и независимой переменными, но и опасностью найти связь между переменными там, где на самом деле ее нет.

В условиях отсутствия информации обо всех точках генеральной совокупности единственный способ уменьшить ошибки в первом случае заключается в использовании при оценке коэффициентов уравнения регрессии метода, обеспечивающего их несмещенность и эффективность. А вероятность наступления второго случая может быть значительно снижена благодаря тому, что априори известно одно свойство генеральной совокупности с двумя независимыми друг от друга переменными – в ней отсутствует именно эта связь. Достигается это снижение за счет проверки статистической значимости полученного уравнения регрессии.

Один из наиболее часто используемых вариантов проверки заключается в следующем. Для полученного уравнения регрессии определяется -статистика - характеристика точности уравнения регрессии, представляющая собой отношение той части дисперсии зависимой переменной которая объяснена уравнением регрессии к необъясненной (остаточной) части дисперсии. Уравнение для определения -статистики в случае многомерной регрессии имеет вид:

где: - объясненная дисперсия - часть дисперсии зависимой переменной Y которая объяснена уравнением регрессии;

Остаточная дисперсия - часть дисперсии зависимой переменной Y которая не объяснена уравнением регрессии, ее наличие является следствием действия случайной составляющей;

Число точек в выборке;

Число переменных в уравнении регрессии.

Как видно из приведенной формулы, дисперсии определяются как частное от деления соответствующей суммы квадратов на число степеней свободы. Число степеней свободы это минимально необходимое число значений зависимой переменной, которых достаточно для получения искомой характеристики выборки и которые могут свободно варьироваться с учетом того, что для этой выборки известны все другие величины, используемые для расчета искомой характеристики.

Для получения остаточной дисперсии необходимы коэффициенты уравнения регрессии. В случае парной линейной регрессии коэффициентов два, по этому в соответствии с формулой (принимая ) число степеней свободы равно . Имеется в виду, что для определения остаточной дисперсии достаточно знать коэффициенты уравнения регрессии и только значений зависимой переменной из выборки. Оставшиеся два значения могут быть вычислены на основании этих данных, а значит, не являются свободно варьируемыми.

Для вычисления объясненной дисперсии значений зависимой переменной вообще не требуются, так как ее можно вычислить, зная коэффициенты регрессии при независимых переменных и дисперсию независимой переменной. Для того чтобы убедиться в этом, достаточно вспомнить приводившееся ранее выражение . По этому число степеней свободы для остаточной дисперсии равно числу независимых переменных в уравнении регрессии (для парной линейной регрессии ).

В результате -критерий для уравнения парной линейной регрессии определяется по формуле:

.

В теории вероятности доказано, что -критерий уравнения регрессии, полученного для выборки из генеральной совокупности у которой отсутствует связь между зависимой и независимой переменной имеет распределение Фишера, достаточно хорошо изученное. Благодаря этому для любого значения -критерия можно рассчитать вероятность его появления и наоборот, определить то значение -критерия которое он не сможет превысить с заданной вероятностью.

Для осуществления статистической проверки значимости уравнения регрессии формулируется нулевая гипотеза об отсутствии связи между переменными (все коэффициенты при переменных равны нулю) и выбирается уровень значимости .

Уровень значимости – это допустимая вероятность совершить ошибку первого рода – отвергнуть в результате проверки верную нулевую гипотезу. В рассматриваемом случае совершить ошибку первого рода означает признать по выборке наличие связи между переменными в генеральной совокупности, когда на самом деле ее там нет.

Обычно уровень значимости принимается равным 5% или 1%. Чем выше уровень значимости (чем меньше ), тем выше уровень надежности теста, равный , т.е. тем больше шанс избежать ошибки признания по выборке наличия связи у генеральной совокупности на самом деле несвязанных между собой переменных. Но с ростом уровня значимости возрастает опасность совершения ошибки второго рода – отвергнуть верную нулевую гипотезу, т.е. не заметить по выборке имеющуюся на самом деле связь переменных в генеральной совокупности. По этому, в зависимости от того, какая ошибка имеет большие негативные последствия, выбирают тот или иной уровень значимости.

Для выбранного уровня значимости по распределению Фишера определяется табличное значение вероятность превышения, которого в выборке мощностью , полученной из генеральной совокупности без связи между переменными, не превышает уровня значимости. сравнивается с фактическим значением критерия для регрессионного уравнения .

Если выполняется условие , то ошибочное обнаружение связи со значением -критерия равным или большим по выборке из генеральной совокупности с несвязанными между собой переменными будет происходить с вероятностью меньшей чем уровень значимости. В соответствии с правилом “очень редких событий не бывает”, приходим к выводу, что установленная по выборке связь между переменными имеется и в генеральной совокупности, из которой она получена.

Если же оказывается , то уравнение регрессии статистически не значимо. Иными словами существует реальная вероятность того, что по выборке установлена не существующая в реальности связь между переменными. К уравнению, не выдержавшему проверку на статистическую значимость, относятся так же, как и к лекарству с истекшим сроком годнос-

Ти – такие лекарства не обязательно испорчены, но раз нет уверенности в их качестве, то их предпочитают не использовать. Это правило не уберегает от всех ошибок, но позволяет избежать наиболее грубых, что тоже достаточно важно.

Второй вариант проверки, более удобный в случае использования электронных таблиц, это сопоставление вероятности появления полученного значения -критерия с уровнем значимости. Если эта вероятность оказывается ниже уровня значимости , значит уравнение статистически значимо, в противном случае нет.

После того как выполнена проверка статистической значимости регрессионного уравнения в целом полезно, особенно для многомерных зависимостей осуществить проверку на статистическую значимость полученных коэффициентов регрессии. Идеология проверки такая же как и при проверке уравнения в целом но в качестве критерия используется -критерий Стьюдента, определяемый по формулам:

и

где: , - значения критерия Стьюдента для коэффициентов и соответственно;

- остаточная дисперсия уравнения регрессии;

Число точек в выборке;

Число переменных в выборке, для парной линейной регрессии .

Полученные фактические значения критерия Стьюдента сравниваются с табличными значениями , полученными из распределения Стьюдента. Если оказывается, что , то соответствующий коэффициент статистически значим, в противном случае нет. Второй вариант проверки статистической значимости коэффициентов – определить вероятность появления критерия Стьюдента и сравнить с уровнем значимости .

Для переменных, чьи коэффициенты оказались статистически не значимы, велика вероятность того, что их влияние на зависимую переменную в генеральной совокупности вообще отсутствует. По этому или необходимо увеличить число точек в выборке, тогда возможно коэффициент станет статистически значимым и заодно уточнится его значение, или в качестве независимых переменных найти другие, более тесно связанные с зависимой переменной. Точность прогнозирования при этом в обоих случаях возрастет.

В качестве экспрессного метода оценки значимости коэффициентов уравнения регрессии можно применять следующее правило – если критерий Стьюдента больше 3, то такой коэффициент, как правило, оказывается статистически значим. А вообще считается, что для получения статистически значимых уравнений регрессии необходимо, чтобы выполнялось условие .

Стандартная ошибка прогнозирования по полученному уравнению регрессии неизвестного значения при известном оценивают по формуле:

Таким образом прогноз с доверительной вероятностью 68% может быть представлен в виде:

В случае если требуется иная доверительная вероятность , то для уровня значимости необходимо найти критерий Стьюдента и доверительный интервал для прогноза с уровнем надежности будет равен .

Прогнозирование многомерных и нелинейных зависимостей

В случае если прогнозируемая величина зависит от нескольких независимых переменных, то в этом случае имеется многомерная регрессия вида:

где: - коэффициенты регрессии, описывающие влияние переменных на прогнозируемую величину.

Методика определения коэффициентов регрессии не отличается от парной линейной регрессии, особенно при использовании электронной таблицы, так как там применяется одна и та же функция и для парной и для многомерной линейной регрессии. При этом желательно чтобы между независимыми переменными отсутствовали взаимосвязи, т.е. изменение одной переменной не сказывалось на значениях других переменных. Но это требование не является обязательным, важно чтобы между переменными отсутствовали функциональные линейные зависимости. Описанные выше процедуры проверки статистической значимости полученного уравнения регрессии и его отдельных коэффициентов, оценка точности прогнозирования остается такой же как и для случая парной линейной регрессии. В тоже время применение многомерных регрессий вместо парной обычно позволяет при надлежащем выборе переменных существенно повысить точность описания поведения зависимой переменной, а значит и точность прогнозирования.

Кроме этого уравнения многомерной линейной регрессии позволяют описать и нелинейную зависимость прогнозируемой величины от независимых переменных. Процедура приведения нелинейного уравнения к линейному виду называется линеаризацией. В частности если эта зависимость описывается полиномом степени отличной от 1, то, осуществив замену переменных со степенями отличными от единицы на новые переменные в первой степени, получаем задачу многомерной линейной регрессии вместо нелинейной. Так, например если влияние независимой переменной описывается параболой вида

то замена позволяет преобразовать нелинейную задачу к многомерной линейной вида

Так же легко могут быть преобразованы нелинейные задачи у которых нелинейность возникает вследствие того, что прогнозируемая величина зависит от произведения независимых переменных. Для учета такого влияния необходимо ввести новую переменную равную этому произведению.

В тех случаях, когда нелинейность описывается более сложными зависимостями, линеаризация возможна за счет преобразования координат. Для этого рассчитываются значения и строятся графики зависимости исходных точек в различных комбинациях преобразованных переменных. Та комбинация преобразованных координат или преобразованных и не преобразованных координат, в которой зависимость ближе всего к прямой линии подсказывает замену переменных которая приведет к преобразованию нелинейной зависимости к линейному виду. Например, нелинейная зависимость вида

превращается в линейную вида

Полученные коэффициенты регрессии для преобразованного уравнения остаются несмещенными и эффективными, но проверка статистической значимости уравнения и коэффициентов невозможна

Проверка обоснованности применения метода наименьших квадратов

Применение метода наименьших квадратов обеспечивает эффективность и несмещенность оценок коэффициентов уравнения регрессии при соблюдении следующих условий (условий Гауса-Маркова):

3. значения не зависят друг от друга

4. значения не зависят от независимых переменных

Наиболее просто можно проверить соблюдение этих условий путем построения графиков остатков в зависимости от , затем от независимой (независимых) переменных. Если точки на этих графиках расположены в коридоре расположенном симметрично оси абсцисс и в расположении точек не просматриваются закономерности, то условия Гауса-Маркова выполнены и возможности повысить точность уравнения регрессии отсутствуют. Если это не так, то существует возможность существенно повысить точность уравнения и для этого необходимо обратиться к специальной литературе.


Оценка статистической значимости параметров и уравнения в целом – это обязательная процедура, которая позволяет сделать ввод о возможности использования построенного уравнения связи для принятия управленческих решений и прогнозирования.

Оценка статистической значимости уравнения регрессии осуществляется с использованием F-критерия Фишера, который представляет собой отношение факторной и остаточных дисперсий, рассчитанных на одну степень свободы.

Факторная дисперсия – объясненная часть вариации признака-результата, то есть обусловленная вариацией тех факторов, которые включены в анализ (в уравнение):

где k – число факторов в уравнении регрессии (число степеней свободы факторной дисперсии); - среднее значение зависимой переменной; - теоретическое (рассчитанное по уравнению регрессии) значение зависимой переменной у i – й единицы совокупности.

Остаточная дисперсия – необъясненная часть вариации признака-результата, то есть обусловленная вариацией прочих факторов, не включенных в анализ.

= , (71)

где - фактическое значение зависимой переменной у i – й единицы совокупности; n-k-1 – число степеней свободы остаточной дисперсии; n – объем совокупности.

Сумма факторной и остаточной дисперсий, как отмечалось выше, есть общая дисперсия признака-результата.

F-критерия Фишера рассчитывается по следующей формуле:

F-критерий Фишера – величина, отражающая соотношение объясненной и необъясненной дисперсий, позволяет ответить на вопрос: объясняют ли включенные в анализ факторы статистическую значимую часть вариации признака-результата. F-критерий Фишера табулирован (входом в таблицу является число степеней свободы факторной и остаточной дисперсий). Если , то уравнение регрессии признается статистически значимым и, соответственно, статистически значим коэффициент детерминации. В противном случае, уравнение – статистически не значимо, т.е. не объясняет существенной части вариации признака-результата.

Оценка статистической значимости параметров уравнения осуществляется на основе t-статистики, которая рассчитывается как отношение модуля параметров уравнения регрессии к их стандартным ошибкам ():

, где ; (73)

, где . (74)

В любой статистической программе расчет параметров всегда сопровождается расчетом значений их стандартных (среднеквадратических) ошибок и t-статистики. Параметр признаются статистически значимым, если фактическое значение t-статистики больше табличного.

Оценка параметров на основе t-статистики, по существу, является проверкой нулевой гипотезы о равенстве генеральных параметров нулю (H 0: =0; H 0: =0;), то есть о не значимости параметров уравнения регрессии. Уровень значимости принятия нулевых гипотез = 1-0,95=0,05 (0,95 – уровень вероятности, как правило, устанавливаемый в экономических расчетах). Если расчетный уровень значимости меньше 0,05 , то нулевая гипотеза отвергается и принимается альтернативная - о статистической значимости параметра.

Проводя оценку статистической значимости уравнения регрессии и его параметров, мы можем получить различное сочетание результатов.

· Уравнение по F-критерию статистически значимо и все параметры уравнения по t-статистике тоже статистически значимы. Данное уравнение может быть использовано как для принятия управленческих решений (на какие факторы следует воздействовать, чтобы получить желаемый результат), так и для прогнозирования поведения признака-результата при тех или иных значениях факторов.

· По F-критерию уравнение статистически значимо, но незначимы отдельные параметры уравнения. Уравнение может быть использовано для принятия управленческих решений (касающихся тех факторов, по которым получено подтверждение статистической значимости их влияния), но уравнение не может быть использовано для прогнозирования.

· Уравнение по F-критерию статистически незначимо. Уравнение не может быть использовано. Следует продолжить поиск значимых признаков-факторов или аналитической формы связи аргументов и отклика.

Если подтверждена статистическая значимость уравнения и его параметров, то может быть реализован, так называемый, точечный прогноз, т.е. рассчитывается вероятное значение признака-результата (y) при тех или иных значениях факторов (x). Совершенно очевидно, что прогнозное значение зависимой переменной не будет совпадать с фактическим ее значением. Это связано, прежде всего, с самой сутью корреляционной зависимости. Одновременно на результат воздействует множество факторов, из которых только часть может быть учтена в уравнении связи. Кроме того, может быть неверно выбрана форма связи результата и факторов (тип уравнения регрессии). Между фактическими значениями признака-результата и его теоретическими (прогнозными) значениями всегда существует различие (). Графически эта ситуация выражается в том, что не все точки поля корреляции лежат на линии регрессии. Лишь при функциональной связи линия регрессии пройдет через все точки поля корреляции. Разность между фактическими и теоретическими значениями результативного признака называют отклонениями или ошибками, или остатками. На основе этих величин и рассчитывается остаточная дисперсия, являющаяся оценкой среднеквадратической ошибки уравнения регрессии. Величина стандартной ошибки используется для расчета доверительных интервалов прогнозного значения признака-результата (Y).

Оценка значимости параметров уравнения регрессии

Оценка значимости параметров уравнения линейной регрессии производится с помощью критерия Стьюдента:

если t расч. > t кр, то принимается основная гипотеза (H o ), свидетельствующая о статистической значимости параметров регрессии;

если t расч. < t кр, то принимается альтернативная гипотеза (H 1 ), свидетельствующая о статистической незначимости параметров регрессии.

где m a , m b – стандартные ошибки параметров a и b:

(2.19)

(2.20)

Критическое (табличное) значение критерия находится с помощью статистических таблиц распределения Стьюдента (приложение Б) или по таблицам Excel (раздел мастера функций «Статистические»):

t кр = СТЬЮДРАСПОБР(α=1-P; k=n-2 ), (2.21)

где k=n-2 также представляет собой число степенейсвободы.

Оценка статистической значимости может быть применена и к линейному коэффициенту корреляции

где m r – стандартная ошибка определения значений коэффициента корреляции r yx

(2.23)

Ниже представлены варианты заданий для практических и лабораторных работ по тематике второго раздела.

Вопросы для самопроверки по 2 разделу

1. Укажите основные составляющие эконометрической модели и их сущность.

2. Основное содержание этапов эконометрического исследования.

3. Сущность подходов по определению параметров линейной регрессии.

4. Сущность и особенность применения метода наименьших квадратов при определении параметров уравнения регрессии.

5. Какие показатели используются для оценки тесноты взаимосвязи исследуемых факторов?

6. Сущность линейного коэффициента корреляции.

7. Сущность коэффициента детерминации.

8. Сущность и основные особенности процедур оценки адекватности (статистической значимости) регрессионных моделей.

9. Оценка адекватности линейных регрессионных моделей по коэффициенту аппроксимации.

10. Сущность подхода оценки адекватности регрессионных моделей по критерию Фишера. Определение эмпирических и критических значений критерия.

11. Сущность понятия «дисперсионный анализ» применительно к эконометрическим исследованиям.

12. Сущность и основные особенности процедуры оценки значимости параметров линейного уравнения регрессии.

13. Особенности применения распределения Стьюдента при оценке значимости параметров линейного уравнения регрессии.

14. В чем состоит задача прогноза единичных значений исследуемого социально-экономического явления?

1. Построить поле корреляции и сформулировать предположение о форме уравнения взаимосвязи исследуемых факторов;

2. Записать основные уравнения метода наименьших квадратов, произвести необходимые преобразования, составить таблицу для промежуточных расчетов и определить параметры линейного уравнения регрессии;

3. Осуществить проверку правильности проведенных вычислений с помощью стандартных процедур и функций электронных таблиц Excel.

4. Провести анализ результатов, сформулировать выводы и рекомендации.

1. Расчет значения линейного коэффициента корреляции;

2. Построение таблицы дисперсионного анализа;

3. Оценка коэффициента детерминации;

4. Осуществить проверку правильности проведенных вычислений с помощью стандартных процедур и функций электронных таблиц Excel.

5. Провести анализ результатов, сформулировать выводы и рекомендации.

4. Провести общую оценку адекватности выбранного уравнения регрессии;

1. Оценка адекватности уравнения по значениям коэффициента аппроксимации;

2. Оценка адекватности уравнения по значениям коэффициента детерминации;

3. Оценка адекватности уравнения по критерию Фишера;

4. Провести общую оценку адекватности параметров уравнения регрессии;

5. Осуществить проверку правильности проведенных вычислений с помощью стандартных процедур и функций электронных таблиц Excel.

6. Провести анализ результатов, сформулировать выводы и рекомендации.

1. Использование стандартных процедур мастера функций электронных таблиц Excel (из разделов «Математические» и «Статистические»);

2. Подготовка данных и особенности применения функции «ЛИНЕЙН»;

3. Подготовка данных и особенности применения функции «ПРЕДСКАЗ».

1. Использование стандартных процедур пакета анализа данных электронных таблиц Excel;

2. Подготовка данных и особенности применения процедуры «РЕГРЕССИЯ»;

3. Интерпретация и обобщение данных таблицы регрессионного анализа;

4. Интерпретация и обобщение данных таблицы дисперсионного анализа;

5. Интерпретация и обобщение данных таблицы оценки значимости параметров уравнения регрессии;

При выполнении лабораторной работы по данным одного из вариантов необходимо выполнить следующие частные задания:

1. Осуществить выбор формы уравнения взаимосвязи исследуемых факторов;

2. Определить параметры уравнения регрессии;

3. Провести оценку тесноты взаимосвязи исследуемых факторов;

4. Провести оценку адекватности выбранного уравнения регрессии;

5. Провести оценку статистической значимости параметров уравнения регрессии.

6. Осуществить проверку правильности проведенных вычислений с помощью стандартных процедур и функций электронных таблиц Excel.

7. Провести анализ результатов, сформулировать выводы и рекомендации.

Задания для практических и лабораторных работ по теме «Парная линейная регрессия и корреляция в эконометрических исследованиях».

Вариант 1 Вариант 2 Вариант 3 Вариант 4 Вариант 5
x y x y x y x y x y
Вариант 6 Вариант 7 Вариант 8 Вариант 9 Вариант 10
x y x y x y x y x y


THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама