THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

ХХ век – век научных революций. Открытия, сделанные в этом веке, изменили ход человеческой цивилизации.

Квантовая теория Планка

Макс Планк

В самом начале ХХ века, в 1900 г., профессор Берлинского университета Макс Планк вывел формулу, описывающую распределение энергии в спектре абсолютно чёрного тела. До открытия Планка считалось, что энергия распределяется равномерно. Но Планк доказал, что она распределяется порциями – квантами. Планк сделал доклад Немецкому физическому обществу 14 декабря 1900 г. Конечно же, ему никто не поверил.

Но уже в 1905 г. на основании выводов Планка Эйнштейн создал квантовую теорию фотоэффекта. А Нильс Бор построил модель атома, в которой электроны вращались по строго определённым орбитам, излучая энергию только в момент перехода из одной орбиты на другую.

Благодаря гениальному открытию Планка учёные поняли, как ведут себя электроны. Впоследствии теория Планка дала мощный толчок развитию электроники, генной инженерии, атомной энергетики.

Теория относительности Эйнштейна

Альберт Эйнштейн

Второе великое научное открытие ХХ века – общая теория относительности Эйнштейна, или теория гравитации.

В 1905 г. Эйнштейн создал специальную теорию относительности. Эйнштейн сделал вывод, что различные наблюдатели по-разному воспринимают любые события, даже пространство и время. Например, для пассажира трамвая предмет, который он уронит на пол, будет падать вертикально вниз. А для наблюдателя на улице этот предмет падает по параболе, так как трамвай движется. То есть, описание любого события зависит от системы отсчёта, в которой находится наблюдатель. Если изменится система отсчёта, то изменится и описание события. Но законы природы отнаблюдателя не зависят. И они будут одни и те же для всех систем отсчёта, движущихся с постоянной скоростью. А общая теория относительности, созданная Эйнштейном в 1916 г., распространяет этот принцип на все системы отсчёта, даже на те, которые движутся с ускорением.

Эйнштейн доказал, что гравитация – это следствие искривления четырёхмерного пространства - времени. Теория Эйнштейна дала объяснение эффекта замедления времени. С помощью этой теории рассчитали орбиту планеты Меркурий, объяснили, почему искривляются лучи звёзд, когда проходят рядом с другими звёздами.

Открытие транзистора

Уильям Шокли, Джон Бардин, Уолтер Браттейн

Без сомнения, открытие транзистора является одним из важнейших открытий в истории человечества.

Первый рабочий транзистор был создан в 1947 г. американскими физиками Уолтер Браттейном, Уильямом Шокли и Джоном Бардиным. Вначале эти великие учёные продемонстрировали опыт, в котором с помощью обычной скрепки для бумаг, золотой фольги и небольшого количества германия увеличили силу тока в сотни раз. Это случилось 16 декабря. А уже через неделю было готово устройство, которое можно было считать действующим транзистором. В июне 1948 г. был создан радиоприёмник, где привычные электронные лампы были заменены транзисторами.

В 1956 г. авторы первого транзистора получили Нобелевскую премию за своё изобретение. А уже в 1958 г. была продемонстрирована первая интегральная схема, которая представляла собой два транзистора, расположенные на одной подложке из кремния.

В электронике началась новая транзисторная эра. Транзисторы заменили лампы повсюду – в телевизорах, радиоприёмниках, ламповых компьютерах.

Если бы не открытие транзистора, современные компьютеры не существовали бы в таком виде, как сейчас. Они не обладали бы таким огромным быстродействием и большой памятью. Не существовало бы жидкокристаллических мониторов, ноутбуков и мобильных телефонов.

Конечно, современные транзисторы отличаются от тех, которые были созданы в середине ХХ века. Технологии изменились. Ина одной подложке размещаются уже миллионы транзисторов.

Лежали успехи матема-тики, служившей интегрирующим фактором для всей системы научного знания. Впечатляющих успехов на протяжении XIX — на-чала XX в. добилась физика . Английский физик-самоучка М. Фара-дей (1791-1867), считающийся одним из наиболее изобретатель-ных умов нового времени, стал основоположником учения об элек-тромагнитном поле. Соотечественник Фарадея Дж. К. Максвелл (1831-1879) перевёл его идеи на общепринятый математический язык. В 1871 г. он основал в Кембридже первую в Великобритании физическую лабораторию. Открытия, сделанные Максвеллом, лег-ли в основу современной физики. Своими научно-популярными ра-ботами Максвелл раскрыл значение электричества для широкой публики. По мнению великого физика А. Эйнштейна, произведён-ный Максвеллом переворот в понятиях о физической реальности «является наиболее глубоким и плодотворным из тех, которые ис-пытала физика со времён Ньютона».

Третьим знаменитым учёным, который наряду с Фарадеем и Максвеллом осуществил «великий перелом» в физике, считается германский физик Г.-Р. Герц (1857-1894). Теоретические открытия своих предшественников он подтвердил экспериментально, пока-зав полную взаимосвязь между электрическими и магнитными явле-ниями. Работы Герца сыграли огромную роль в развитии науки и техники, способствуя появлению беспроволочного телеграфа, радиосвязи, радиолокации, телевидения. Германский физик В.-К. Рентген (1845-1923) открыл в 1895 г. не-видимые x-лучи (рентгеновское излучение). Рентген стал первым физиком, удостоенным Нобелевской премии.

Присуждение Нобелевских премий за наиболее выдаю-щиеся работы в области физики, химии, физиологии и ме-дицины началось с 1901 г. Их учредителем был А. Б. Нобель, шведский химик (изобретатель динамита) и промышленник, который завещал своё состояние для организации специ-ального фонда, из которого до сих пор выплачиваются пре-мии за научные открытия, произведения литературы, а так-же за деятельность по укреплению мира.

Англичанин А. Беккерель открыл в 1896 г. явление радиоактивности, важнейший вклад в дальнейшее ис-следование которого внесли французский физик Пьер Кюри (1859-1906) и его жена Мария Склодовская-Кюри (1867-1934). Они открыли первые радиоактивные эле-менты — полоний (назван в честь Польши — родины М. Кюри) и ра-дий. В 1903 г. все трое были удостоены Нобелевской премии. М. Кю-ри стала в 1906 г. первой женщиной-профессором Парижского уни-верситета; в 1911 г. она стала первым в мире учёным, получившим Нобелевскую премию в области химии. Материал с сайта


Мария и Пьер Кюри
А. Эйнштейн

В начале XX в. свои первые открытия сделал Э. Резерфорд (1871-1937). В ходе своих исследований он открыл сложное строе-ние атома и заложил основы учения о радиоактивности. В 1911 г. Резерфорд предложил первую электронную модель атома. Герман-ский физик М. Планк (1858-1947) в 1900 г. выяснил, что световая энергия передаётся не путём непрерывного излучения, а отдельны-ми порциями, которые получили название кванты. Введение этой величины положило начало эпохе новой, квантовой , физики . Дат-ский физик Н. Бор (1885-1962) применил идею квантовой энергии Планка к изучению атомного ядра. В 1913 г. он предложил свою мо-дель атома, положив начало квантовой атомной теории. Его иссле-дования внесли большой вклад в изучение ядерных реакций.

Важнейший этап в развитии физики и естествознания в целом связан с деятельностью Альберта Эйнштейна (1879-1955). В 1905 г. появилась его первая статья с изложением специальной теория от-носительности. После переезда в Берлин Эйнштейн завершил соз-дание общей теории относительности и продвинул вперед кванто-вую теорию излучения.

В ходе своего развития физика больше, чем любая другая наука, показала относительность всех устоявшихся прежде понятий класси-ческой науки и несостоятельность представлений об абсолютной до-стоверности научных знаний.

На этой странице материал по темам:

Открытие электрона, явления радиоактивности, атомного ядра явилось результатом изучения строения вещества, достигнутым физикой в конце XIX века. Исследования электрических явлений в жидкостях и газах, оптических спектров атомов, рентгеновских лучей, фотоэффекта показали, что вещество имеет сложную структуру. Классическая физика оказалась несостоятельной в объяснении новых экспериментальных фактов. Уменьшение временных и пространствен­ных масштабов, в которых разыгрываются физические явления, привели к «новой физике», столь непохожей на привычную традици­онную классическую физику. Развитие физики в начале XX века привело к полному пересмотру классических представлений. В основе «новой физики» лежат две фундаментальные теории:

  • теория относительности
  • квантовая теория.

Теория относительности и квантовая теория являются фундаментом, на котором построено описание явлений микромира.

Создание А. Эйнштейном в 1905 году теории относительности привело к радикальному пересмотру представлений о свойствах пространства и времени, электромагнитного поля. Стало ясно, что невозможно создание механических моделей для всех физических явлений.
В основу теории относительности положены две физические концепции.

  • Согласно принципу относительности равномерное и прямолинейное движение тел не влияет на происходящие в них процессы
  • Существует предельная скорость распространения взаимодействия - скорость света в пустоте. Скорость света является фундаментальной константой современной теории. Существование предельной скорости распространения взаимодействия означает, что существует связь между пространственными и временными интервалами.

Математической основой специальной теории относительности являются преобразования Лоренца.

Инерциальная система отсчета − система отсчета, покоящаяся или движущаяся равномерно и прямолинейно. Система, отчета, движущаяся с постоянной скоростью относительно любой инерциальной системы отсчета также является инерциальной.

Принципы относительности Галилея

  1. Если законы механики справедливы в одной системе отсчета, то они справедливы и в любой другой системе отсчета, движущейся равномерно и прямолинейно относительно первой.
  2. Время одинаково во всех инерциальных системах отсчета.
  3. Нет никакого способа обнаружить равномерное прямолинейное движение.

Постулаты специальной теории относительности

  1. Законы физики одинаковы во всех инерциальных системах отсчета.
  2. Скорость света в вакууме равна постоянной величине с независимо от скорости движения источника или приемника.

Преобразования Лоренца. Координаты материальной точки массы покоя m в инерциальной системе отсчета S определяются как (t ,) = (t ,x ,y ,z ), а скорость u = ||. Координаты той же точки в другой инерциальной системе отсчета S" (t" ,x" ,y" ,z" ), движущейся относительно S с постоянной скоростью , связаны с координатами в системе S преобразованием Лоренца (рис. 1).
В случае, если координатные оси систем z и z" сонаправлены с вектором и в начальный момент времени t = t" = 0 начала координат обеих систем совпадали, то преобразования Лоренца даются соотношениями

x" = x ; y = y "; z" = γ(z βct ); ct" = γ(ct βz ),

где β = v/c , v − скорость системы отсчета в единицах с (0 ≤ β ≤ 1), γ − лоренц-фактор.


Рис. 1. Штрихованная система S" движется относительно системы S со скоростью v вдоль оси z .

Компоненты скорости частицы в системе S" u" x , u" y , u" z связаны с компонентами скорости в системе S u x , u y , u z соотношениями

Обратные преобразования Лоренца получаются взаимной заменой координат r i r" i , u i u" i и заменой v → −v .

x = x" ; y = y" ; z = γ(z" βct" ); ct = γ(ct" βz" ).

При малых скоростях v преобразования Лоренца совпадают с нерелятивистскими преобразованиями Галилея

x" = x ; y" = y ; z" = z vt" ; t = t" .

Относительность пространственных расстояний (сокращение Лоренца-Фитцджеральда): l" = l/ γ .
Относительность промежутков времени между событиями (релятивистское замедление времени): Δt" = γ Δt .
Относительность одновременности событий.
Если в системе S для событий А и В t A = t B и
x A
x B , то в системе S" t" A = t" B + γ v /c 2 (x B − x A).

Полная энергия E и импульс p частицы определяются соотношениями

E = mc 2 γ ,
(1)

где E , р и m − полная энергия, импульс и масса частицы, c = 3·10 10 см·сек -1 − скорость света в вакууме,
Полная энергия и импульс частицы зависят от системы отсчета. Масса частицы не изменяется при переходе от одной инерциальной системы отсчета к другой. Она является лоренцевым инвариантом. Полная энергия E , импульс p и масса m частицы связаны соотношением

E 2 − p 2 c 2 = m 2 c 4 , (2)

Из соотношений (1) и (2) следует, что если энергия E и импульс p измеряются в двух различных системах движущихся друг относительно друга со скоростью v , то энергия и импульс будут иметь в этих системах различные значения. Однако величина E 2 − p 2 c 2 , которая называется релятивистский инвариант , будет в этих системах одинаковой.

При нагревании твердого тела оно раскаляется и начинает излучать в непрерывной области спектра. Это излучение называется излучением абсолютно черного тела. Было сделано много попыток описать форму спектра абсолютно черного тела, основываясь на законах классической электромагнитной теории. Сравнение экспериментальных данных с расчетами Рэлея-Джинса (рис. 2.) показывает, что они согласуются только в длинноволновой области спектра. Различие в области коротких длин волн было названо ультрафиолетовой катастрофой .


Рис. 2. Распределение энергии спектра теплового излучения.
Точками показаны экспериментальные результаты.

В 1900 г. была опубликована работа М. Планка, посвященная проблеме теплового излучения тел. М. Планк моделировал вещество как совокупность гармонических осцилляторов различной частоты. Предположив, что излучение происходит не непрерывно, а порциями - квантами, он получил формулу для распределения энергии по спектру теплового излучения, которая хорошо согласовывалась с опытными данными

где h − постоянная Планка, k − постоянная Больцмана, T − температура, ν − частота излучения.

h = 6.58·10 -22 МэВ∙сек,
k = 8.62·10 -11 МэВ∙К –1 .

Часто используется величина ћ = h /2π .

Так, впервые в физике появилась новая фундаментальная константа − постоянная Планка h . Гипотеза Планка о квантовой природе теплового излучения противоречит основам классической физики и показывает границы ее применимости.
Через пять лет А. Эйнштейн, обобщив идею М. Планка, показал, что квантованность является общим свойством электромагнитного излучения. Согласно идеям А. Эйнштейна электромагнитное излучение состоит из квантов, названных позднее фотонами. Каждый фотон имеет определенную энергию E и импульс p :

E = h ν ,

где λ и ν − длина волны и частота фотона, − единичный вектор в направлении распространения волны.
Представления о квантованности электромагнитного излучения позволили объяснить закономерности фотоэффекта, исследованные экспериментально Г. Герцем и А. Столетовым. На основе квантовой теории А. Комптоном в 1922 году было объяснено явление упругого рассеяния электромагнитного излучения на свободных электронах, сопровождающееся увеличением длины волны электромагнитного излучения.

где λ и λ" − длины волн падающего и рассеянного фотонов, m − масса электрона, θ − угол рассеяния фотона, h/mc = 2.4·10 -10 см = 0.024 Å − комптоновская длина волны электрона.


Рис. 3. Эффект Комптона − упругое рассеяние фотона на электроне.

Открытие двойственной природы электромагнитного излучения − корпускулярно-волнового дуализма оказало значительное влияние на развитие квантовой физики, объяснение природы материи. В 1924 г. Луи де Бройль выдвинул гипотезу об универсальности корпускулярно-волнового дуализма. Согласно этой гипотезе не только фотоны, но и любые другие частицы материи наряду с корпускулярными обладают также и волновыми свойствами. Соотношения, связывающие корпускулярные и волновые свойства частиц те же, что были установлены ранее для фотонов

λ − длина волны, которую можно сопоставить с частицей. Волновой вектор ориентирован по направлению движения частицы. Прямыми опытами, подтверждающими идею корпускулярно-волнового дуализма, были опыты, выполненные в 1927 году К. Дэвиссоном и Л. Джермером по дифракции электронов на монокристалле никеля. Позднее наблюдалась дифракция и других микрочастиц. Метод дифракции частиц в настоящее время широко используется в изучении строения и свойств вещества.


В. Гейзенберг
(1901–1976)

Экспериментальное подтверждение идеи корпускулярно-волнового дуализма привело к пересмотру привычных представлений о движении частиц и способа описания частиц. Для классических материальных точек характерно движение по определенным траекториям, так, что их координаты и импульсы в любой момент времени точно известны. Для квантовых частиц это утверждение неприемлемо, так как для квантовой частицы импульс частицы связан с ее длиной волны, а говорить о длине волны в данной точке пространства бессмысленно. Поэтому для квантовой частицы нельзя одновременно точно определить значения ее координат и импульса. Если частица занимает точно определенное положение в пространст­ве, то ее импульс полностью не определен и наоборот, частица с определенным импульсом имеет полностью неопределенную координату. Неопределенность в значении координаты частицы Δx и неопределенность в значении компоненты импульса частицы Δp x связаны соотношением неопределенности, установленным В. Гейзенбергом в 1927 году

Δx ·Δp x ћ .

Из соотношения неопределенности следует, что в области квантовых явлений неправомерна постановка некоторых вопросов, вполне естественных для классической физики. Так, например, не имеет смысла говорить о движении частицы по определенной траектории. Необходим принципиально новый подход к описанию физических систем. Не все физические величины, характеризующие систему, могут быть измерены одновременно. В частности, если неопределенность времени жизни некоторого квантового состояния равна Δt , то неопределенность величины энергии этого состояния ΔE не может быть меньше ћ t , т. е.

ΔE ·Δt ћ .


Э. Шредингер
(1887–1961)

К середине 20-х годов стало очевидно, что полуклассическая теория атома Н. Бора не может дать полного описания свойств атома. В 1925–1926 гг. в работах В. Гейзенберга и Э. Шредингера был разработан общий подход описания квантовых явлений − квантовая теория. Эволюция квантовой системы в нерелятивистском случае описывается волновой функцией, удовлетворяющей уравнению Шредингера

Физики 18 – 20 веков.

Методическая разработка по физике .

Преподаватель

Штейникова Ирина Васильевна

2014 год


Данная презентация является продолжением серии об ученых, внесших наибольший вклад в развитие физики. Она состоит из нескольких ключевых слайдов, на которых перечислены физики 18-20 веков. Имя или фамилия сопровождается изображением. При этом и имя и изображение являются ссылками на вспомогательные слайды, на которых о данных личностях рассказывается более подробно. На этих слайдах некоторые слова выделены цветом, это означает, что данное слово является ссылкой на внешний источник, расположенный в сети Интернет. В ходе работы пользователь выбирает с помощью мыши имя ученого или его изображение, либо ссылку на следующую страницу.

Чтобы вернуться на основную страницу со вспомогательной, нужно нажать ссылку «обратно на ……». Для перехода на следующую основную страницу необходимо выбрать ссылку «на следующую страницу», Для завершения работы необходимо выбрать ссылку «Завершить презентацию», расположенную на последней основной странице. Надеюсь, что данная презентация окажет Вам помощь в подготовке к занятиям.


Томас Юнг

Майкл Фарадей

Физики 18 века

Следующая страница


Томас Юнг

  • Дата рождения 13 июня 1773 , - английский физик , врач, астроном и востоковед, один из создателей волновой теории света . Наиболее важные направления его работ - оптика , механика , физиология зрения . Высказал гипотезу о поперечности световых колебаний,разработал также теорию цветного зрения. Исследовал деформациию сдвига, ввёл числовую характеристику упругости при растяжении и сжатии - так называемый модуль Юнга . Он впервые рассмотрел механическую работу как величину, пропорциональную энергии (термин ввёл Юнг), под которой понимал величину, пропорциональную массе и квадрату скорости тела.

Назад на «Физики 18 века»


Майкл Фарадей

Дата рождения 22 сентября 1791 - английский физик, химик и физико-химик, основоположник учения об электромагнитном поле , В 1832 году открыл электрохимические законы , которые легли в основу нового раздела науки - электрохимии , имеющего сегодня огромное количество технологических приложений. Фарадея увлекла проблема связи между электричеством и магнетизмом . Он поставил задачу «Превратить магнетизм в электричество» и через 10 лет нашёл решение этой проблемы.

Назад на «Физики 18 века»


Менделеев

Максвелл

Беккерель

Физики начала 19 века

Следующая страница


Джеймс Клерк Максвелл

  • Дата рождения 13 июня 1831 - британский физик и математик . Заложил основы современной классической электродинамики (уравнения Максвелла ), ввёл в физику понятия тока смещения и электромагнитного поля , получил ряд следствий из своей теории (предсказание электромагнитных волн , электромагнитная природа света , давление света и другие). Один из основателей кинетической теории газов , получил ряд важных результатов в молекулярной физике и термодинамике . Пионер теории цветов и теории упругости .

Дмитрий Иванович Менделеев

  • Дата рождения 27 января 1834 - русский учёный-энциклопедист : химик , физикохимик , физик , метролог , экономист , технолог , геолог , метеоролог , педагог , воздухоплаватель , приборостроитель . Профессор Санкт-Петербургского университета ; член-корреспондент по разряду «физический» Императорской Санкт-Петербургской Академии наук . Среди наиболее известных открытий - периодический закон химических элементов , один из фундаментальных законов мироздания , неотъемлемый для всего естествознания .

Назад на «Физики начала 19 века»


Антуан Анри Беккерель

  • Дата рождения 15 декабря 1852 - французский физик , В 1896 г. Беккерель случайно открыл радиоактивность во время работ по исследованию фосфоресценции в солях урана. В 1903 г. он получил совместно с Пьером и Марией Кюри Нобелевскую премию по физике «В знак признания его выдающихся заслуг, выразившихся в открытии самопроизвольной радиоактивности».

Назад на «Физики начала 19 века»


Генрих Рудольф Герц

  • Дата рождения - 22 февраля 1857 - немецкий физик. Основное достижение - экспериментальное подтверждение электромагнитной теории света Джеймса Максвелла . Герц доказал существование электромагнитных волн . Исследовал отражение , интерференцию , дифракцию и поляризацию электромагнитных волн , доказал, что свет – это разновидность электромагнитных волн. Герц впервые наблюдал и дал описание внешнего фотоэффекта .

Назад на «Физики начала 19 века»


Попов

Циолковский

Резерфорд

Содди

Физики второй половины 19 века

Следующая страница


Константин Эдуардович Циолковский

  • Дата рождения 5 сентября 1857 - российский и советский учёный - самоучка , исследователь, школьный учитель. Один из пионеров космонавтики . Обосновал вывод уравнения реактивного движения, пришёл к выводу о необходимости использования «ракетных поездов» - прототипов многоступенчатых ракет. Автор работ по аэродинамике, воздухоплаванию и другим наукам. Сторонник и пропагандист идей освоения космического пространства. Предлагал заселить космическое пространство с использованием орбитальных станций, выдвинул идею поездов на воздушной подушке

Александр Степанович Попов

  • Дата рождения 4 марта 1859 - русский физик и электротехник, профессор, изобретатель радио .
  • Впервые он представил своё изобретение 7 мая 1895 года на заседании Русского физико-химического общества . С 1897 года Попов проводил опыты по радиотелеграфированию на кораблях Балтийского флота. Летом 1901 года Попов модифицировал свой приёмник, поставив вместо чувствительного реле телефонные трубки, после этого фирмой Дюкрете , уже выпускавшей в 1898 году приёмники его конструкции, был налажен выпуск телефонных приёмников.

Назад на «Физики 2 половины 19 века


Эрнест Резерфорд

  • Дата рождения 30 августа 1871 - британский физик. Известен как «отец» ядерной физики , создал планетарную модель атома . Открыл альфа - и бета-излучение , короткоживущий изотоп радона и множество изотопов . Объяснил на основе свойств радона радиоактивность тория, открыл и объяснил радиоактивное превращение химических элементов, создал , расщепил атом азота, обнаружил протон. Доказал, что альфа-частица - ядро гелия. вывел формулу Резерфорда . Первым открыл образование новых химических элементов при распаде тяжелых химических радиоактивных элементов.

Назад на «Физики 2 половины 19 века


Фредерик Содди

  • Дата рождения 2 сентября 1877 - английский радиохимик, член Лондонского королевского общества (1910 ), лауреат Нобелевской премии по химии (1921). Совместно с Резерфордом предложил теорию радиоактивного распада В 1903 Резерфорд и Содди установили, что радиоактивный распад протекает по закону, описывающему ход мономолекулярной реакции. Всего им было опубликовано более 70 статей по химии.

Назад на «Физики 2 половины 19 века


Эйнштейн

Чедвик

Физики начала 20 века

Следующая страница


Альберт Эйнштейн

  • Эйнштейн - автор более 300 научных работ по физике. Он разработал несколько значительных физических теорий: Специальная теория относительности (1905 ), Общая теория относительности , Квантовая теория фотоэффекта , Квантовая теория теплоёмкости , Квантовая статистика Бозе - Эйнштейна , Статистическая теория броуновского движения , Теория индуцированного излучения , Теория рассеяния света на термодинамических флуктуациях в среде. Эйнштейн способствовал пересмотру понимания физической сущности пространства и времени и построению новой теории гравитации . Вместе с Планком , заложил основы квантовой теории.

  • Дата рождения 8 марта 1879 - немецкий химик, учёный-новатор в области радиохимии , открывший ядерную изомерию (Уран Z) и расщепление урана . В 1920-х годах разработал метод применения радиоизотопов в химии, включая выращивание кристаллов и использование меченых атомов в химических реакциях и создал тем самым новую область химии - прикладную радиохимию. Решительно выступал против применения ядерной энергии в военных целях. Он считал такое использование его открытия злоупотреблением и даже преступлением.

Назад на «Физики начала 20 века


Джеймс Чедвик

  • Дата рождения 20 октября 1891 - английский физик , известный по открытие нейтрона , Ученик Э.Резерфорда . В 1920 году экспериментально подтвердил равенство заряда ядра порядковому номеру элемента. Изучал искусственное превращение элементов под действием альфа-частиц (совместно с Резерфордом). В 1943 - 1945 гг. возглавлял группу английских учёных, работавших в Лос-Аламосской лаборатории (США ) над проектом атомной бомбы.

Назад на «Физики начала 20 века


Гейзенберг

Ферми

Штрассман

Физики второй половины 20 века

Следующая страница


Энрико Ферми

  • Дата рождения 29 сентября 1901 - итало-американский физик , внёсший большой вклад в развитие современной теоретической и экспериментальной физики, один из основоположников квантовой физики . Разработал статистику частиц с полуцелым спином (фермионов ) . Разработал правила квантования электромагнитного поля . Создал теорию бета-распада , прототип теории слабых взаимодействий элементарных частиц . Пришёл к выводу, что нейтроны должны быть наиболее эффективным орудием для получения радиоактивных элементов . Открыл более 60 изотопов и замедление нейтронов (эффект Ферми), селективное поглощение нейтронов .

Вернер Гейзенберг

  • Дата рождения 5 декабря 1901 - немецкий физик - теоретик , один из создателей квантовой механики . Автор ряда фундаментальных результатов в квантовой теории: заложил основы матричной механики , сформулировал соотношение неопределённостей , применил формализм квантовой механики к проблемам ферромагнетизма , аномального эффекта Зеемана и прочим. Участвовал в развитии квантовой электродинамики (теория Гейзенберга - Паули ) и квантовой теории поля , предпринимал попытки создания единой теории поля . Ведущий теоретик немецкого ядерного проекта . Изучал физику космических лучей , теорию турбулентности .

Назад на «Физики второй половины 20 века»


Фриц Штрассман

  • Дата рождения 22 февраля 1902 - немецкий химик и физик . Изучал процессы ядерного деления , свойства радиоактивных изотопов урана и тория . В 1938 совместно с О. Ганом открыл деление ядер урана при бомбардировке их нейтронами , химическими методами доказал факт деления.

Назад на «Физики второй половины 20 века»


Поль Адриен Морис Дирак

  • Дата рождения 8 августа 1902 - английский физик -теоретик, один из создателей квантовой механики . Работы Дирака посвящены квантовой физике , теории элементарных частиц , общей теории относительности . Автор трудов по квантовой механике , квантовой электродинамике и квантовой теории поля . Предложил релятивистское уравнение электрона , что объяснило спин , Ввел представление об античастицах . К другим известным результатам Дирака относятся статистическое распределение для фермионов , концепция магнитного монополя , гипотеза больших чисел, гамильтонова формулировка теории гравитации.

Назад на «Физики второй половины 20 века»


Курчатов

Иваненко

Королев

Советские физики

Завершить презентацию


Дмитрий Дмитриевич Иваненко

  • Дата рождения 29 июля 1904 - советский физик-теоретик . Работы относятся к ядерной физике, теории поля, синхротронному излучению , единой теории поля , теории гравитации , истории физики. Большинство работ выполнены совместно с крупнейшими физиками первой половины XX-го века. С Г. Гамовым вывел уравнение Шредингера , исходя из модели 5-мерного пространства. С Ландау рассматривал уравнение Клейна - Гордона, статистику Ферми - Дирака и геометрию Иваненко - Ландау - Кэлера. Рассматривал теорию мировых констант, предложил протон-нейтронную модель ядра

Назад на «Советские физики»


Игорь Васильевич Курчатов

  • Дата рождения 12 января 1903 - русский советский физик , «отец» советской атомной бомбы . Основатель и первый директор Института атомной энергии , главный научный руководитель атомной проблемы в СССР , один из основоположников использования ядерной энергии в мирных целях. Под его руководством был произведён взрыв первой советской атомной бомбы , разработана первая в мире водородная бомба и термоядерная бомба АН602 (Царь-бомба) рекордной мощности 52 000 кт. Занимался проблемой управляемого термоядерного синтеза . Руководил разработкой и строительством первой в мире атомной электростанцией .

Назад на «Советские физики»


Сергей Павлович Королев

  • Дата рождения 12 января 1907 - советский учёный, конструктор и организатор производства ракетно - космической техники и ракетного оружия СССР , основоположник практической космонавтики . Крупнейшая фигура XX века в области космического ракетостроения и кораблестроения. Создатель советской ракетно-космической техники, обеспечившей стратегический паритет и сделавшей СССР передовой ракетно-космической державой, ключевая фигура в освоении человеком космоса, создатель практической космонавтики. Осуществил запуск первого искусственного спутника Земли и первого космонавта Юрия Гагарина .

Назад на «Советские физики»


  • http://ru.wikipedia.org/wiki/%D0%A6%D0%B8%D0%BE%D0%BB%D0%BA%D0%BE%D0%B2%D1%81%D0%BA%D0%B8%D0%B9
  • http://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BF%D0%BE%D0%B2,_%D0%90%D0%BB%D0%B5%D0%BA%D1%81%D0%B0%D0%BD%D0%B4%D1%80_%D0%A1%D1%82%D0%B5%D0%BF%D0%B0%D0%BD%D0%BE%D0%B2%D0%B8%D1%87
  • http://ru.wikipedia.org/wiki/%D0%AD%D1%80%D0%BD%D0%B5%D1%81%D1%82_%D0%A0%D0%B5%D0%B7%D0%B5%D1%80%D1%84%D0%BE%D1%80%D0%B4
  • http://ru.wikipedia.org/wiki/%D0%A1%D0%BE%D0%B4%D0%B4%D0%B8
  • http://ru.wikipedia.org/wiki/%D0%AD%D0%B9%D0%BD%D1%88%D1%82%D0%B5%D0%B9%D0%BD,_%D0%90%D0%BB%D1%8C%D0%B1%D0%B5%D1%80%D1%82
  • http://ru.wikipedia.org/wiki/%D0%9E%D1%82%D1%82%D0%BE_%D0%B3%D0%B0%D0%BD
  • http://ru.wikipedia.org/wiki/%D0%A7%D0%B5%D0%B4%D0%B2%D0%B8%D0%BA,_%D0%94%D0%B6%D0%B5%D0%B9%D0%BC%D1%81
  • http://ru.wikipedia.org/wiki/%D0%AD%D0%BD%D1%80%D0%B8%D0%BA%D0%BE_%D0%A4%D0%B5%D1%80%D0%BC%D0%B8
  • http://ru.wikipedia.org/wiki/%D0%93%D0%B5%D0%B9%D0%B7%D0%B5%D0%BD%D0%B1%D0%B5%D1%80%D0%B3,_%D0%92%D0%B5%D1%80%D0%BD%D0%B5%D1%80_%D0%9A%D0%B0%D1%80%D0%BB
  • http://ru.wikipedia.org/wiki/%D0%A8%D1%82%D1%80%D0%B0%D1%81%D1%81%D0%BC%D0%B0%D0%BD,_%D0%A4%D1%80%D0%B8%D1%86
  • http://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BB%D1%8C_%D0%94%D0%B8%D1%80%D0%B0%D0%BA
  • http://ru.wikipedia.org/wiki/%D0%98%D0%B2%D0%B0%D0%BD%D0%B5%D0%BD%D0%BA%D0%BE,_%D0%94%D0%BC%D0%B8%D1%82%D1%80%D0%B8%D0%B9_%D0%94%D0%BC%D0%B8%D1%82%D1%80%D0%B8%D0%B5%D0%B2%D0%B8%D1%87
  • http://www.g-sardanashvily.ru/d-ivanenko/ivphoto.html

XX век является веком научно-технической революции, которая постоянно шла по восходящей линии. Началом этой революции можно считать 28 мая 1919 г., когда великий германский физик Альберт Эйнштейн (1879- 1955) сделал свой доклад о теории относительности. Теория Эйнштейна полностью изменила представления об окружающем мире и стала фундаментом всех будущих великих открытий естествознания XX в.

Вслед за Эйнштейном в науке появились сотни молодых гениальных физиков и математиков. Если в XIX в. атом считался мельчайшей частицей материи, то теперь были открыты составляющие его позитроны, электроны, нейтроны, элементарные частицы.

Квантовая механика - так назывался раздел теоретической физики, основоположником которой был А. Эйнштейн, - в течение длительного времени разрабатывалась интернациональным кругом физиков. Эйнштейн и его сотрудник М. Планк (1858-1947) работали в Берлине в 20-х годах. М. Планк стал лауреатом Нобелевской премии в 1919 г., а Эйнштейн - в 1921 г. Нильс Бор (1885-1962), директор Института теоретической физики в Копенгагене - лауреат Нобелевской премии 1922г. Супруги П. Кюри и М. Склодовская-Кюри, открывшие радиоактивное излучение, получили Нобелевскую премию в 1903 г. Огромный вклад в теоретическую физику внес выдающийся английский ученый Э. Резерфорд (1871-1937), который создал теорию радиоактивности, предсказал существование нейтрона и осуществил первую в истории искусственную ядерную реакцию. Ему присвоили Нобелевскую премию в 1908 г. В 1931г. за выдающиеся заслуги перед Англией Резерфорд получил титул лорда Нельсона. Итальянский ученый Э. Ферми (1901-1954) открыл искусственную радиоактивность, вызванную нейтронами, построил первый в истории ядерный реактор и первым осуществил в нем (2 декабря 1942 г.) цепную ядерную реакцию, открыв путь к созданию атомной бомбы. Он стал лауреатом Нобелевской премии в 1938 г.

Теоретическая физика стала столбовой дорогой развития естественных наук XX в. Телевидение, рентгеновские лучи, радиация, электроника стали известны благодаря великим открытиям физики. Особенно большое значение имело изобретение английскими физиками радара в 1939 г. В 1940 г. человечество подошло к кибернетике. Эта наука позволила создать электронно-вычислительные машины, системы получения, обработки и хранения информации, без которых невозможно представить современную жизнь.

Научно-техническая революция вызвала фантастический рост общественного, политического и экономического сознания. Наука стала требовать огромных финансовых вложений, создания крупных мировых научных центров для проведения фундаментальных исследований.

Уже в 20-е годы XX в. начали создаваться мощные научные лаборатории, которые стали ведущими центрами научно-технической революции. Одним из таких центров была Кавендишская лаборатория в Кембриджском университете (Великобритания), основанная в 1874 г., но ставшая центром мировых фундаментальных исследований в начале 20-х годов XX в. Здесь были открыты электрон, позитрон, нейтрон, предложена модель ДНК, произведено расщепление ядерного ядра. В лаборатории сотрудничали великие ученые современности П. Ланжевен, Дж. Бернал, Ф.Астон. В течение длительного времени ее бессменным руководителем был Э. Резерфорд.

Научные центры были созданы в США (Лос-Аламосская лаборатория при Калифорнийском университете, где была создана первая атомная бомба), во Франции, где работали супруги Кюри, в Германии во главе с М. Планком, в Дании под руководством Нильса Бора. В этих научных центрах были собраны выдающиеся ученые, работавшие в области физики, математики, биологии, химии. Перед Второй мировой войной значимость научных центров возросла. Вместе с военными заказами в них широким потоком хлынули финансовые средства. Здесь создавались новейшие боеприпасы, техника, топливо для самолетов и танков. От эффективности работы ученых во многом зависел исход будущей войны.

Научно-техническая революция привела к глубоким изменениям в самом обществе. Возросла роль науки в общественной жизни. Изменилось отношение к ученым и науке. Теперь ученые стали ведущими личностями в общественно-политической жизни, не менее популярными, чем актеры и писатели. Создавались министерства по развитию науки, межправительственные институты.

Практически во всех ведущих странах мира были приняты законы об обязательном и бесплатном среднем образовании, в университетах выделялись специальные стипендии для талантливой молодежи, создавались условия для развития научных исследований. Образованность народа стала показателем развития государства, наиболее ярким свидетельством его благосостояния и мощи.

Все великие ученые XX в. были великими демократами. Они убежденно выступали против войны, диктатуры, фашизма и являлись активными борцами за мир и социальный прогресс. Они открыто порывали с фашизмом и, не желая ему служить, эмигрировали в демократические страны, чтобы принимать активное участие во всемирном движении против фашизма. А. Эйнштейн в 1933 г.. после прихода фашистов к власти, эмигрировал в США, Ферми уехал из Италии. Нильсу Бору пришлось бежать из Дании.

Научно-техническая революция привела к демократической и интеллектуальной революции. Огромные массы людей, приобщившись к образованию, пробудились к активной политической жизни. В мире появились новые ценности, определявшие достоинство человека, - интеллект, талант, образованность, культура. Новые средства передвижения и коммуникации изменили провинциальный тип мышления. Массовое сознание и массовая культура приобщили среднего человека к политике и сделали его значительным фактором в развитии политических концепций XX в.

  • Здравствуйте Господа! Пожалуйста, поддержите проект! На содержание сайта каждый месяц уходит деньги ($) и горы энтузиазма. 🙁 Если наш сайт помог Вам и Вы хотите поддержать проект 🙂 , то можно сделать это, перечислив денежные средства любым из следующих способов. Путём перечисления электронных денег:
  1. R819906736816 (wmr) рубли.
  2. Z177913641953 (wmz) доллары.
  3. E810620923590 (wme)евро.
  4. Payeer-кошелёк: P34018761
  5. Киви-кошелёк (qiwi): +998935323888
  6. DonationAlerts: http://www.donationalerts.ru/r/veknoviy
  • Полученная помощь будет использована и направлена на продолжение развития ресурса, Оплата хостинга и Домена.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама