THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Экспоненциальное сглаживание – более сложный метод взвешенного среднего. Каждый новый прогноз основан на предыдущем прогнозе плюс процент разницы между этим прогнозом и фактическим значением ряда в этой точке.

F t = F t -1 + (A t -1 - F t -1) (2)

Где: F t – прогноз для периода t

F t -1 – прогноз для периода t-1

– сглаживающая константа

A t - 1 – фактический спрос или продажи для периода t-1

Константа сглаживания представляет собой процент от ошибки про­гноза. Каждый новый прогноз равен предыдущему прогнозу плюс процент от предыдущей ошибки.

Чувствительность корректировки прогноза к ошибке определена кон­стантой сглаживания , чем ближе её значение к 0 , тем медленнее прогноз будет приспосабливаться к ошибкам прогноза (т.е. тем больше степень сгла­живания). Наоборот, чем ближе значение к 1,0 , тем выше чувствитель­ность и меньше сглаживание.

Выбор константы сглаживания – в основном вопрос свободного вы­бора или метода проб и ошибок. Цель состоит в том, чтобы выбрать такую константу сглаживания, чтобы, с одной стороны, прогноз остался достаточно чувствительным к реальным изменениям данных временного ряда, а с дру­гой – хорошо сглаживал скачки, вызванные случайными факторами. Обычно используемые значения находятся в диапазоне от 0,05 до 0,50.

Экспоненциальное сглаживание – один из наиболее широко исполь­зуемых методов прогнозирования, частично из – за минимальных требова­ний по хранению данных и легкости вычисления, а частично из-за той лёгко­сти, с которой система коэффициентов значимости может быть изменена простым изменением значения .

Таблица 3. Экспоненциальное сглаживание

Период Фактиче­ский спрос α= 0,1 α = 0,4
прогноз ошибка прогноз ошибка
10 000 - - - -
11 200 10 000 11 200-10 000=1 200 10 000 11 200-10 000=1 200
11 500 10 000+0,1(11 200-10 000)=10 120 11 500-10 120=1 380 10 000+0,4(11 200-10 000)=10 480 11 500-10 480=1 020
13 200 10 120+0,1(11 500-10 120)=10 258 13 200-10 258=2 942 10 480+0,4(11 500-10 480)=10 888 13 200-10 888=2 312
14 500 10 258+0,1(13 200-10 258)=10 552 14 500-10 552=3 948 10 888+0,4(13 200-10 888)=11 813 14 500-11 813=2 687
- 10 552+0,1(14 500-10 552)=10 947 - 11 813+0,4(14 500-11 813)=12 888 -



Методы для тенденции

Существует два важных метода, которые можно использовать для разработки прогнозов, когда присутствует тенденция. Один из них предпола­гает использование уравнения тенденции; другой – расширение экспонен­циального сглаживания.

Уравнение тенденции:

Линейное уравнение тенденции имеет следующий вид:

Y t = a + δ∙ t (3)

Где: t – определённое число периодов времени от t= 0 ;

Y t – прогноз периода t ;

α – значение Y t при t=0

δ – наклон линии.

Коэффициенты прямой α и δ , могут быть вычислены из статистических данных за определённый период, с использованием следующих двух урав­нений:

δ= , (4)

α = , (5)

Где: n – число периодов,

y – значение временного ряда

Таблица 3. Уровень тенденции.

Период (t) Год Уровень продаж (y) t∙y t 2
10 000 10 000
11 200 22 400
11 500 34 500
13 200 52 800
14 500 72 500
Итого: - 60 400 192 200

Вычислим коэффициенты линии тенденции:

δ=

Таким образом, линия тенденции Y t = α + δ ∙ t

В нашем случае, Y t = 43 900+1 100 ∙t ,

Где t = 0 для периода 0.

Составим уравнение для периода 6 (2015 год) и 7 (2016 год):

– прогноз на 2015 год.

Y 7 = 43 900+1 100*7= 51 600

Построим график:

Экспоненциальное сглаживание тенденций

Разновидность простого экспоненциального сглаживания может ис­пользоваться, когда временной ряд выявляет тенденцию. Эта разновидность называется экспоненциальным сглаживание, учитывающим тенденцию или, иногда, двойным сглаживанием. Оно отличается от простого экспоненциаль­ного сглаживания, которое используется только тогда, когда данные изме­няются вокруг некоторого среднего значения или имеют скачкообразные или постепенные изменения.

Если ряд выявляет тенденцию и при этом используется простое экспо­ненциальное сглаживание, то все прогнозы будут запаздывать по отноше­нию к тенденции. Например, если данные увеличиваются, то каждый про­гноз будет занижен. Наоборот, уменьшение данных даёт завышенный про­гноз. Графическое отображение данных может показать, когда двойное сглаживание будет предпочтительнее, чем простое.

Скорректированный тенденцией прогноз (TAF) состоит из двух элемен­тов: сглаженной ошибки и фактора тенденции.

TAF t +1 = S t + T t , (6)

Где: S t – сглаженный прогноз;

T t – оценка текущей тенденции

И S t = TAF t + α 1 (A t - TAF t) , (7)

T t = T t-1 + α 2 (TAF t –TAF t-1 – T t-1) (8)

Где α 1 , α 2 – сглаживающие константы.

Чтобы использовать этот метод, нужно выбрать значения α 1 , α 2 (обыч­ным путём подбора) и сделать начальный прогноз и оценку тенденций.

Таблица 4. Экспоненциальное сглаживание тенденции.

Насколько Forecast NOW! лучше модели Экспоненциального сглаживания (ES) вы можете увидеть на графике ниже. По оси X - номер товара, по оси Y - процентное улучшение качества прогноза. Описание модели, детальное исследование, результаты экспериментов читайте ниже.

Описание модели

Прогнозирование методом экспоненциального сглаживания является одним из самых простых способов прогнозирования. Прогноз может быть получен только на один период вперед. Если прогнозирование ведется в разрезе дней, то только на один день вперед, если недель, то на одну неделю.

Для сравнения прогнозирование проводилось на неделю вперед в течение 8 недель.

Что такое экспоненциально сглаживание?

Пусть ряд С представляет исходный ряд продаж для прогнозирования

С(1)- продажи в первую неделю, С (2) во второй и так далее.

Рисунок 1. Продажи по неделям, ряд С

Аналогично, ряд S представляет собой экспоненциально сглаженный ряд продаж. Коэффициент α находится от нуля до единицы. Получается он следующим образом, здесь t - момент времени (день, неделя)

S (t+1) = S(t) + α *(С(t) - S(t))

Большие значения константы сглаживания α ускоряют отклик прогноза на скачок наблюдаемого процесса, но могут привести к непредсказуемым выбросам, потому что сглаживание будет почти отсутствовать.

Первый раз после начала наблюдений, располагая лишь одним результатом наблюдений С (1) , когда прогноза S(1) нет и формулой (1) воспользоваться еще невозможно, в качестве прогноза S(2) следует взять С (1) .

Формула легко может быть переписана в ином виде:

S(t+1) = (1 - α)* S(t) + α * С(t) .

Таким образом, с увеличением константы сглаживания доля последних продаж увеличивается, а доля сглаженных предыдущих уменьшается.

Константа α выбирается опытным путем. Обычно строится несколько прогнозов для разных констант и выбирается наиболее оптимальная константа с точки зрения выбранного критерия.

Критерием может выступать точность прогнозирования на предыдущие периоды.

В своем исследовании мы рассмотрели модели экспоненциального сглаживания, в которых α принимает значения {0.2, 0.4, 0.6, 0.8}. Для сравнения с алгоритмом прогнозирования Forecast NOW! для каждого товара строились прогнозы при каждом α, выбирался наиболее точный прогноз. В действительности же, ситуация обстояла бы гораздо более сложная, пользователю не зная наперед точности прогноза нужно определиться с коэффициентом α, от которого очень сильно зависит качество прогноза. Вот такой замкнутый круг.

Наглядно

Рисунок 2. α =0.2 , степень экспоненциального сглаживания высокая, реальные продажи учитываются слабо

Рисунок 3. α =0.4 , степень экспоненциального сглаживания средняя, реальные продажи учитываются в средней степени

Можно видеть как с увеличением константы α сглаженный ряд все сильнее соответствует реальным продажам, и если там присутствуют выбросы или аномалии, мы получим крайне неточный прогноз.

Рисунок 4. α =0.6 , степень экспоненциального сглаживания низкая, реальные продажи учитываются значительно

Можем видеть, что при α=0.8 ряд почти в точности повторяет исходный, а значит прогноз стремится к правилу «будет продано столько же, сколько и вчера»

Стоит отметить, что здесь совершенно нельзя ориентироваться на ошибку приближения к исходным данным. Можно добиться идеального соответствия, но получить неприемлемый прогноз.

Рисунок 5. α =0.8 , степень экспоненциального сглаживания крайне низкая, реальные продажи учитываются сильно

Примеры прогнозов

Теперь давайте посмотрим на прогнозы, которые получаются с использованием различных значений α. Как можно видеть из рисунка 6 и 7, чем больше коэффициент сглаживания, тем точнее повторяет реальные продажи с опозданием на один шаг, прогноз. Такое опоздание на деле может оказаться критичным, поэтому нельзя просто выбирать максимальное значение α. Иначе получится ситуация, когда мы говорим, что будет продано ровно столько, сколько было продано в прошлый период.

Рисунок 6. Прогноз метода экспоненциального сглаживания при α=0.2

Рисунок 7. Прогноз метода экспоненциального сглаживания при α=0.6

Давайте посмотрим, что получается при α = 1.0. Напомним, S - прогнозируемые (сглаженные) продажи, C - реальные продажи.

S(t+1) = (1 - α)* S(t) + α * С(t) .

S(t+1) = С(t) .

Продажи в t+1 день согласно прогнозу равны продажам в предыдущий день. Поэтому к выбору константы надо подходить с умом.

Сравнение с Forecast NOW!

Теперь рассмотрим данный метод прогнозирования в сравнении с Forecast NOW!. Сравнение велось на 256 товарах, которые имеют различные продажи, с сезонностью краткосрочной и долгосрочной, с «плохими» продажами и дефицитом, акциями и прочими выбросами. Для каждого товара был построен прогноз по модели экспоненциального сглаживания, для различных α, выбирался лучший и сравнивался с прогнозом по модели Forecast NOW!

В таблице ниже вы видите значение ошибки прогноза для каждого товара. Ошибка здесь считалась как RMSE. Это корень из среднеквадратичного отклонения прогноза от реальности. Грубо говоря, показывает, на сколько единиц товара мы отклонились в прогнозе. Улучшение показывает, на сколько процентов прогноз Forecast NOW! лучше, если цифра положительная, и хуже, если отрицательная. На рисунке 8 по оси X отложены товары, по оси Y указано насколько прогноз Forecast NOW! лучше, чем прогнозирование методом экспоненциального сглаживания. Как можно видеть из этого графика, точность прогнозирования Forecast NOW! почти всегда в два раза выше и почти никогда не хуже. На деле это означает, что использование Forecast NOW! позволит в два раза сократить запасы или снизить дефицит.

Экспоненциальное сглаживание - способ сглаживания временных рядов, вычислительная процедура которого включает обработку всех предыдущих наблюдений, при этом учитывается устаревание информации по мере удаления от прогнозного периода. Иначе говоря, чем "старше" наблюдение, тем меньше оно должно влиять на величину прогнозной оценки. Идея экспоненциального сглаживания состоит в том, что по мере "старения" соответствующим наблюдениям придаются убывающие веса.

Данный метод прогнозирования считается весьма эффективным и падежным. Основные достоинства метода состоят в возможности учета весов исходной информации, в простоте вычислительных операций, в гибкости описания различных динамик процессов. Метод экспоненциального сглаживания дает возможность получить оценку параметров тренда, характеризующих не средний уровень процесса, а тенденцию, сложившуюся к моменту последнего наблюдения. Наибольшее применение метод нашел для реализации среднесрочных прогнозов. Для метода экспоненциального сглаживания основным моментом является выбор параметра сглаживания (сглаживающей константы) и начальных условий.

Простое экспоненциальное сглаживание временных рядов, содержащих тренд, приводит к систематической ошибке, связанной с отставанием сглаженных значений от фактических уровней временного ряда. Для учета тренда в нестационарных рядах применяется специальное двухпараметрическое линейное экспоненциальное сглаживание. В отличие от простого экспоненциального сглаживания с одной сглаживающей константой (параметром) данная процедура сглаживает одновременно случайные возмущения и тренд с использованием двух различных констант (параметров). Двухпараметрический метод сглаживания (метод Хольта) включает два уравнения. Первое предназначено для сглаживания наблюденных значений, а второе -для сглаживания тренда:

где I - 2, 3, 4 - периоды сглаживания; 5, - сглаженная величина на период £; У, - фактическое значение уровня на период 1 5, 1 - сглаженное значение на период Ь-Ьг- сглаженное значение тренда на период 1 - сглаженное значение на период I- 1; А и В - сглаживающие константы (числа между 0 и 1).

Сглаживающие константы А и В характеризуют фактор взвешивания наблюдений. Обычно Л, В < 0,3. Так как (1 - А) < 1, (1 - В) < 1, то они убывают по экспоненциальному закону по мере удаления наблюдения от текущего периода I. Отсюда данная процедура получила название экспоненциально сглаживания.

Уравнение добавляется в общую процедуру для сглаживания тренда. Каждая новая оценка тренда получается как взвешенная сумма разности между последними двумя сглаженными значениями (текущая оценка тренда) и предыдущей сглаженной оценки. Данное уравнение позволяет существенно сократить влияние случайных возмущений на тренд с течением времени.

Прогнозирование с использованием экспоненциального сглаживания подобно процедуре "наивного" прогнозирования, когда прогнозная оценка на завтра полагается равной сегодняшнему значению. В данном случае в качестве прогноза на один период вперед рассматривается сглаженная величина на текущий период плюс текущее сглаженное значение тренда:

Данную процедуру можно использовать для прогнозирования на любое число периодов, на пример на т периодов:

Процедура прогнозирования начинается с того, что сглаженная величина 51 полагается равной первому наблюдению У, т.е. 5, = У,.

Возникает проблема определения начального значения тренда 6]. Существуют два способа оценки Ьх.

Способ 1. Положим Ьх = 0. Такой подход хорошо работает в случае длинного исходного временного ряда. Тогда сглаженный тренд за небольшое число периодов приблизится к фактическому значению тренда.

Способ 2. Можно получить более точную оценку 6, используя первые пять (или более) наблюдений временного ряда. На их основе гю методу наименьших квадратов решается уравнение У(= а + Ь х г. Величина Ь берется в качестве начального значения тренда.

Экстраполяция - это метод научного исследования, который основан на распространении прошлых и настоящих тенденций, закономерностей, связей на будущее развитие объекта прогнозирования. К методам экстраполяции относятся метод скользящей средней, метод экспоненциального сглаживания, метод наименьших квадратов.

Метод экспоненциального сглаживания наиболее эффективен при разработке среднесрочных прогнозов. Он приемлем при прогнозировании только на один период вперед. Его основные достоинства простота процедуры вычислений и возможность учета весов исходной информации. Рабочая формула метода экспоненциального сглаживания:

При прогнозировании данным методом возникает два затруднения:

  • выбор значения параметра сглаживания α;
  • определение начального значения Uo.

От величины α зависит , как быстро снижается вес влияния предшествующих наблюдений. Чем больше α, тем меньше сказывается влияние предшествующих лет. Если значение α близко к единице, то это приводит к учету при прогнозе в основном влияния лишь последних наблюдений. Если значение α близко к нулю, то веса, по которым взвешиваются уровни временного ряда, убывают медленно, т.е. при прогнозе учитываются все (или почти все) прошлые наблюдения.

Таким образом, если есть уверенность, что начальные условия, на основании которых разрабатывается прогноз, достоверны, следует использовать небольшую величину параметра сглаживания (α→0). Когда параметр сглаживания мал, то исследуемая функция ведет себя как средняя из большого числа прошлых уровней. Если нет достаточной уверенности в начальных условиях прогнозирования, то следует использовать большую величину α, что приведет к учету при прогнозе в основном влияния последних наблюдений.

Точного метода для выбора оптимальной величины параметра сглаживания α нет. В отдельных случаях автор данного метода профессор Браун предлагал определять величину α, исходя из длины интервала сглаживания. При этом α вычисляется по формуле:

где n – число наблюдений, входящих в интервал сглаживания.

Задача выбора Uo (экспоненциально взвешенного среднего начального) решается следующими способами:

  • если есть данные о развитии явления в прошлом, то можно воспользоваться средней арифметической и приравнять к ней Uo;
  • если таких сведений нет, то в качестве Uo используют исходное первое значение базы прогноза У1.

Также можно воспользоваться экспертными оценками.

Отметим, что при изучении экономических временных рядов и прогнозировании экономических процессов метод экспоненциального сглаживания не всегда «срабатывает». Это обусловлено тем, что экономические временные ряды бывают слишком короткими (15-20 наблюдений), и в случае, когда темпы роста и прироста велики, данный метод не «успевает» отразить все изменения.

Пример применения метода экспоненциального сглаживания для разработки прогноза

Задача . Имеются данные, характеризующие уровень безработицы в регионе, %

  • Постройте прогноз уровня безработицы в регионе на ноябрь, декабрь, январь месяцы, используя методы: скользящей средней, экспоненциального сглаживания, наименьших квадратов.
  • Рассчитайте ошибки полученных прогнозов при использовании каждого метода.
  • Сравните полученные результаты, сделайте выводы.

Решение методом экспоненциального сглаживания

1) Определяем значение параметра сглаживания по формуле:

где n – число наблюдений, входящих в интервал сглаживания. α = 2/ (10+1) = 0,2

2) Определяем начальное значение Uo двумя способами:
І способ (средняя арифметическая) Uo = (2,99 + 2,66 + 2,63 + 2,56 + 2,40 + 2,22 + 1,97 + 1,72 + 1,56 + 1,42)/10 = 22,13/10 = 2,21
II способ (принимаем первое значение базы прогноза) Uo = 2,99

3) Рассчитываем экспоненциально взвешенную среднюю для каждого периода, используя формулу

где t – период, предшествующий прогнозному; t+1 – прогнозный период; Ut+1 - прогнозируемый показатель; α - параметр сглаживания; Уt - фактическое значение исследуемого показателя за период, предшествующий прогнозному; Ut - экспоненциально взвешенная средняя для периода, предшествующего прогнозному.

Например:
Uфев = 2,99*0,2 +(1-0,2) * 2,21 = 2,37 (І способ)
Uмарт = 2,66*0,2+(1-0,2) * 2,37 = 2,43 (І способ) и т.д.

Uфев = 2,99*0,2 +(1-0,2) * 2,99 = 2,99 (II способ)
Uмарт = 2,66*0,2+(1-0,2) * 2,99 = 2,92 (II способ)
Uапр = 2,63*0,2+(1-0,2) * 2,92 = 2,86 (II способ) и т.д.

4) По этой же формуле вычисляем прогнозное значение
Uноябрь= 1,42*0,2+(1-0,2) * 2,08 = 1,95 (І способ)
Uноябрь= 1,42*0,2+(1-0,2) * 2,18 = 2,03 (ІІ способ)
Результаты заносим в таблицу.

5) Рассчитываем среднюю относительную ошибку по формуле:

ε = 209,58/10 = 20,96% (І способ)
ε = 255,63/10 = 25,56% (ІІ способ)

В каждом случае точность прогноза является удовлетворительной поскольку средняя относительная ошибка попадает в пределы 20-50%.

Решив данную задачу методами скользящей средней и наименьших квадратов , сделаем выводы.

02.04.2011 – Стремление человека приподнять завесу грядущего и предвидеть ход событий имеет такую же длинную историю, как и его попытки, понять окружающий мир. Очевидно, что в основе интереса к прогнозу лежат достаточно сильные жизненные мотивы (теоретические и практические). Прогноз выступает в качестве важнейшего метода проверки научных теорий и гипотез. Способность предвидеть будущее является неотъемлемой стороной сознания, без которой была бы невозможна сама человеческая жизнь.

Понятие “прогнозирование” (от греч. prognosis – предвидение, предсказание) означает процесс разработки вероятностного суждения о состоянии какого-либо явления или процесса в будущем, это познание того, чего еще нет, но что может наступить в ближайшее или отдаленное время.

Прогноз по своему содержанию более сложен, чем предсказание. Он, с одной стороны, отражает наиболее вероятное состояние объекта, а с другой – определяет пути и средства достижения желаемого результата. На основе полученной прогнозным путем информации по достижению желаемой цели, принимаются определенные решения.

Необходимо отметить, что динамика экономических процессов в современных условиях отличается нестабильностью и неопределенностью, что затрудняет применение традиционных методов прогнозирования.

Модели экспоненциального сглаживания и прогнозирования относятся к классу адаптивных методов прогнозирования, основной характеристикой которых является способность непрерывно учитывать эволюцию динамических характеристик изучаемых процессов, подстраиваться под эту динамику, придавая, в частности, тем больший вес и тем более высокую информационную ценность имеющимся наблюдениям, чем ближе они расположены к текущему моменту времени. Смысл термина состоит в том, что адаптивное прогнозирование позволяет обновлять прогнозы с минимальной задержкой и с помощью относительно несложных математических процедур.

Метод экспоненциального сглаживания был независимо открыт Брауном (Brown R.G. Statistical forecasting for inventory control, 1959) и Хольтом (Holt C.C. Forecasting Seasonal and Trends by Exponentially Weighted Moving Averages, 1957). Экспоненциальное сглаживание, как и метод скользящих средних, для прогноза использует прошлые значения временного ряда.

Сущность метода экспоненциального сглаживания заключается в том, что временной ряд сглаживается с помощью взвешенной скользящей средней, в которой веса подчиняются экспоненциальному закону. Взвешенная скользящая средняя с экспоненциально распределенными весами характеризует значение процесса на конце интервала сглаживания, то есть является средней характеристикой последних уровней ряда. Именно это свойство и используется для прогнозирования.

Обычное экспоненциальное сглаживание применяется в случае отсутствия в данных тренда или сезонности. В этом случае прогноз является взвешенной средней всех доступных предыдущих значений ряда; веса при этом со временем геометрически убывают по мере продвижения в прошлое (назад). Поэтому (в отличие от метода скользящего среднего) здесь нет точки, на которой веса обрываются, то есть зануляются. Прагматически ясная модель простого экспоненциального сглаживания может быть записана следующим (по представленной ссылке можно скачать все формулы статьи):

Покажем экспоненциальный характер убывания весов значений временного ряда – от текущего к предыдущему, от предыдущего к пред–предыдущему и так далее:

Если формула применяется рекурсивно, то каждое новое сглаженное значение (которое является также прогнозом) вычисляется как взвешенное среднее текущего наблюдения и сглаженного ряда. Очевидно, что результат сглаживания зависит от параметра адаптации альфа . Его можно интерпретировать как коэффициент дисконтирования, характеризующий меру девальвации данных за единицу времени. Причем влияние данных на прогноз экспоненциально убывает с “возрастом” данных. Зависимость влияния данных на прогноз при разных коэффициентах альфа приведена на рисунке 1.

Рисунок 1. Зависимость влияния данных на прогноз при разных коэффициентах адаптации

Следует заметить, что значение сглаживающего параметра не может равняться 0 или 1, так как в этом случае сама идея экспоненциального сглаживания отвергается. Так, если альфа равняется 1, то прогнозное значение F t+1 совпадает с текущим значением ряда Хt , при этом экспоненциальная модель стремится к самой простой “наивной” модели, то есть в этом случае прогнозирование является абсолютно тривиальным процессом. Если альфа равняется 0, то начальное прогнозное значение F 0 (initial value ) одновременно будет являться прогнозом для всех последующих моментов ряда, то есть прогноз в этом случае будет выглядеть в виде обычной горизонтальной линии.

Тем не менее, рассмотрим варианты сглаживающего параметра, близкие к 1 или 0. Так, если альфа близко к 1, то предыдущие наблюдения временного ряда практически полностью игнорируются. В случае если альфа близко к 0, то игнорируются уже текущие наблюдения. Значения альфа между 0 и 1 дают промежуточные результаты. По мнению ряда авторов, оптимальное значение альфа находится в пределах от 0,05 до 0,30. Однако иногда альфа , большее 0,30, дает лучший прогноз.

В целом лучше оценивать оптимальное альфа по исходным данным (при помощи поиска по сетке), а не использовать искусственные рекомендации. Тем не менее, в случае если значение альфа , превышающее 0,3, минимизирует ряд специальных критериев, то это указывает на то, что другая техника прогнозирования (с применением тренда или сезонности) способна обеспечить еще более точные результаты. Для нахождения оптимального значения альфа (то есть минимизации специальных критериев) используется квазиньютоновский алгоритм максимизации правдоподобия (вероятности), который эффективнее обычного перебора на сетке.

Перепишем уравнение (1) в виде альтернативного варианта, позволяющего оценить, как модель экспоненциального сглаживания “обучается” на своих прошлых ошибках:

Из уравнения (3) ярко видно, что прогноз на период t+1 подлежит изменению в сторону увеличения, в случае превышения фактического значения временного ряда в период t над прогнозным значением, и, наоборот, прогноз на период t+1 должен быть уменьшен, если Х t меньше, чем F t .

Отметим, что при использовании методов экспоненциального сглаживания важным вопросом всегда является определение начальных условий (начального прогнозного значения F 0 ). Процесс выбора начального значения сглаженного ряда называется инициализацией (initializing ), или, иначе, “разогревом” (“warming up ”) модели. Дело в том, что начальное значение сглаженного процесса может существенным образом повлиять на прогноз для последующих наблюдений. С другой стороны, влияние выбора уменьшается с длиной ряда и становится некритичным при очень большом числе наблюдений. Браун впервые предложил использовать в качестве стартового значения среднее динамического ряда. Другие авторы предлагают использовать в качестве начального прогноза первое фактическое значение временного ряда.

В середине прошлого века Хольт предложил расширить модель простого экспоненциального сглаживания за счет включения в нее фактора роста (growth factor ), или иначе тренда (trend factor ). В результате модель Хольта может быть записана следующим образом:

Данный метод позволяет учесть присутствие в данных линейного тренда. Позднее были предложены другие виды трендов: экспоненциальный, демпфированный и др.

Винтерс предложил усовершенствовать модель Хольта с точки зрения возможности описания влияния сезонных факторов (Winters P.R. Forecasting Sales by Exponentially Weighted Moving Averages, 1960).

В частности, он далее расширил модель Хольта за счет включения в нее дополнительного уравнения, описывающего поведение сезонной компоненты (составляющей). Система уравнений модели Винтерса выглядит следующим образом:

Дробь в первом уравнении служит для исключения сезонности из исходного ряда. После исключения сезонности (по методу сезонной декомпозиции Census I ) алгоритм работает с “чистыми” данными, в которых нет сезонных колебаний. Появляются они уже в самом финальном прогнозе (15), когда “чистый” прогноз, посчитанный почти по методу Хольта, умножается на сезонную компоненту (индекс сезонности ).



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама