THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Свободные электроны в металле можно рассматривать как своеобразный электронный газ. Первая попытка описать свойства металлов была предпринята Друде и Лоренцем в классической электронной теории металлов. Согласно этой теории электронный газ ведет себя подобно электронному газу, состоящему из молекул, и поэтому должен подчиняться статистике Максвелла-Больцмана. Но эта теория не смогла объяснить ряд явлений. Так, например, из опыта известно, что молярные теплоемкости всех твердых тел (и металлов, и диэлектриков) приблизительно одинаковы и равны 3R (закон Дюлонга и Пти). Отсюда следует, что теплоемкость электронного газа в металлах настолько мала, что ее вклад в общую теплоемкость не обнаруживается на опыте. По классической же теории теплоемкость электронного газа должна быть равна , а теплоемкость металла, равная сумме теплоемкости решетки и электронного газа, должна быть равна

C = 3R + =4,5 R (3.2.1)

Другим существенным затруднением классической теории является невозможность объяснения температурной зависимости сопротивления металлов. Опытным путем установлено, что удельное сопротивление практически всех металлов в достаточно широком температурном интервале линейно зависит от температуры

r = r 0 (1+at), (3.2.2)

где r- удельное сопротивление при температуре t, r 0 - удельное сопротивление при температуре 0°C, a - температурный коэффициент сопротивления при температуре 0°C.

Из классической же теории следует, что удельное сопротивление должно быть пропорционально корню квадратному из температуры.

Дальнейшее развитие физической науки привело к созданию квантовой механики и квантовой теории металлов, учитывающих волновые свойства электронов. Согласно квантовым представлениям электронный газ в металле подчиняется принципу Паули и описывается квантовой статистикой Ферми – Дирака

, (3.2.3)

где f F - функция распределения Ферми-Дирака, характеризующая вероятность заполнения квантового состояния (уровня) с энергией Е , и равнаясредней степени заселенности электронами квантового состояния, соответствующего энергии Е, m - химический потенциал электронного газа. При абсолютном нуле температуры (Т=0 К) химический потенциал называют также энергией Ферми и обозначают E F .



Найдем вид функции распределения f F при Т=0 К .

Рассмотрим состояния электронов с энергией E < E F . В этом cлучае показатель экспоненты в выражении (3.2.3) отрицателен;

при T → 0 → 0 f(E) → 1.

Для состояний электронов с энергией E > E F показатель экспоненты в выражении (2.4) положителен;

при T → 0 → ∞ f(E) → 0.

Из этого рассмотрения следует, что при Т=0 функция распределения f F принимает значения

(3.3.4)


Согласно зонной теории валентная зона, определяющая свойства металла, заполнена электронами частично. При абсолютном нуле температуры свободные электроны занимают все дозволенные энергетические уровни вплоть до уровня Ферми, при этом вероятность заполнения этих уровней равна 1. На каждом уровне согласно принципу Паули располагаются по 2 электрона с противоположными спинами (рис.3.4).

Уровни, энергия которых выше E F , остаются совершенно свободными (вероятность их заполнения равна 0). Следовательно, энергия Ферми E F представляет собой максимальную энергию, которую могут иметь электроны при абсолютном нуле температуры. Эта энергия не является тепловой (kТ=0 ), она имеет квантовую природу, обусловленную, в частности, принципом Паули, и зависит от концентрации свободных электронов в металле. Расчет дает для энергии Ферми следующее выражение

. (3.2.5)

Здесь h - постоянная Планка; n - концентрация электронов.

Наивысший энергетический уровень, занятый электронами при Т=0, называют уровнем Ферми. Уровень Ферми будет тем выше, чем больше концентрация n электронов. Как показывает расчет, средняя энергия электрона при Т=0 равна

Уровень Ферми . Несмотря на огромное количество свободных электронов в металле, располагаются они по энергетическим уровням потенциальной ямы в строгом порядке. Каждый из электронов занимает вакантное место на возможно более низком уровне. И это вполне естественно, так как всякая система, будучи предоставлена самой себе, то есть в отсутствие внешнего воздействия, всегда стремится перейти в состояние с наименьшей энергией. Распределение электронов по уровням подчинено принципу Паули, согласно которому никакие две частицы не могут находиться в совершенно одинаковых состояниях. В силу этого на каждом энергетическом уровне может расположиться не более двух электронов, да и то имеющих различные направления спинов. По мере укомплектования нижних уровней происходит заселение все более высоко расположенных уровней. Если в рассматриваемом образце металла имеется N свободных электронов, то в отсутствие теплового возбуждения, то есть при абсолютном нуле температуры (T = 0), все свободные электроны разместятся попарно на N/2 нижних уровнях (рис. 47). Самый высокий энергетический уровень потенциальной ямы металла, занятый электронами при Т = 0, называется уровнем Ферми * и обозначается буквой μ или W F . Энергия электрона, находящегося на этом уровне, называется энергией Ферми. Все энергетические уровни, расположенные выше уровня Ферми, при Т = 0 оказываются абсолютно пустыми.

* (Свое название этот уровень получил в честь выдающегося итальянского физика Э. Ферми, разработавшего совместно с известным английским физиком П. Дираком теорию поведения коллективов частиц, ведущих себя как электроны в металле. )

Вполне очевидно, что для выхода электронов, находящихся на уровне Ферми, за пределы металла должна быть совершена работа


Величина А, равная энергетическому расстоянию между уровнем удаленного электрона ВВ и уровнем Ферми, называется термодинамической работой выхода или просто работой выхода. Именно эта величина определяет поведение различных металлов при установлении контакта между ними или при создании контакта металл - полупроводник.

Функция распределения Ферми - Дирака . Характер распределения частиц по разным уровням или состояниям в тех или иных условиях определяется так называемой функцией распределения. В общем случае функция распределения описывает вероятность занятости того или иного уровня частицами. Если достоверно известно, что данный уровень заселен частицей, то говорят, что вероятность обнаружения частицы на этом уровне равна 1. Если же с полной достоверностью можно сказать, что на рассматриваемом уровне нет частиц, то говорят, что вероятность обнаружения частиц в рассматриваемом состоянии равна 0. Однако во многих случаях нельзя достоверно утверждать, что уровень заполнен или пуст. Тогда вероятность нахождения частицы на рассматриваемом уровне отлична от нуля, но меньше единицы. При этом чем больше вероятность обнаружить частицу на рассматриваемом уровне, тем ближе к единице оказывается значение функции распределения для соответствующего состояния.

Если по оси абсцисс откладывать значения энергии, соответствующей разным уровням, от дна потенциальной ямы до ее потолка, а по оси ординат - вероятность заполнения электронами соответствующих уровней, то мы получим график функции распределения Ферми - Дирака При Т = 0 он имеет вид, приведенный на рисунке 48. Часто этот график называют ступенькой Ферми. Из него видно, что при Т = 0 все уровни, вплоть до уровня Ферми, оказываются занятыми электронами. В точке W = μ функция распределения скачкообразно падает до нуля; это значит, что все уровни, расположенные выше уровня Ферми, пусты.

Влияние температуры . При температурах, отличных от нуля, вид графика зависимости отличается от приведенного на рисунке 48. Повышение температуры приводит к появлению теплового возбуждения электронов, которое они получают от тепловых колебаний кристаллической решетки. Благодаря этому возбуждению часть электронов, расположенных на наиболее высоких заполненных уровнях, переходит на пустые уровни, лежащие выше уровня Ферми (рис. 49). Вероятность обнаружения электронов на этих уровня становится уже отличной от нуля. Одновременно с этим из-за ухода части электронов с некоторых уровней, расположенных непосредственно под уровнем Ферми, вероятность заполнения их окажется меньше единицы. Таким образом, повышение температуры приводит к некоторому "размытию" границы ступеньки Ферми: вместо скачкообразного изменения от 1 к 0 функция распределения совершает плавный переход. На рисунке 50 пунктиром показан вид графика функции распределения электронов по уровням при Т = 0, а сплошными линиями отражены распределения электронов при температурах, отличных от нуля. Площадь криволинейного треугольника, расположенного под кривой распределения правее значения W F (площадка 2), пропорциональна числу электронов, перешедших на возбужденные уровни, а площадь такого же треугольника, расположенного слева от значения W F над кривой распределения (площадка 1), пропорциональна числу электронов, ушедших с уровней, которые ранее были заполненными, то есть числу освободившихся под уровнем Ферми мест. Понятно, что площади этих двух треугольников одинаковы, так как с разных позиций они выражают одно и то же число электронов.

Следует отметить, что в диапазоне рабочих температур степень размытия кривой распределения электронов в металле очень невелика. Объясняется это тем, что тепловому возбуждению подвергаются только те электроны, которые расположены на энергетических уровнях, непосредственно примыкающих к уровню Ферми. Можно качественно оценить энергетическую глубину залегания уровней, подвергающихся возбуждению. Из молекулярной физики известно, что кинетическая энергия частиц, обусловленная тепловым движением, выражается так:


Следовательно, значение энергии, которую могут передать электронам испытывающие тепловые колебания атомы кристаллической решетки, по порядку величины равно kT. При комнатной температуре в то время как энергия Ферми для металлов при этой температуре лежит в диапазоне от 3 до 10 эВ. Поэтому оказывается, что в обычных условиях в переходах на более высокие энергетические уровни могут принимать участие не более 1% всех свободных электронов. Причем это как раз те электроны, энергия которых близка к энергии Ферми. Что же касается электронов, заселяющих энергетические уровни, расположенные в глубине потенциальной ямы и удаленные от уровня Ферми больше чем на kT, то они не принимают участия в тепловом возбуждении, из-за чего распределение этих электронов остается таким же, как и при абсолютном нуле.

Физический смысл уровня Ферми . Обсуждая в §6 способность твердых тел проводить электрический ток, мы пришли к выводу, что проводимость связана с возможностью перехода электронов на более высокие энергетические уровни, то есть определяется возможностью получения электронами ускорения во внешнем электрическом поле. В металлах при Т > 0 такая возможность имеется только у электронов, находящихся в области размытия функции распределения, так как реальные электрические поля не в состоянии вырвать электроны из глубины потенциальной ямы и перевести их на свободные уровни, энергия которых выше W F (перейти же на соседние, более высоко расположенные уровни глубинные электроны не могут, потому что все эти уровни заняты). Следовательно, при Т > 0 энергия Ферми имеет смысл наиболее вероятной или средней энергии электронов металла, могущих принять участие в проводимости при данной температуре. Эти электроны ответственны не только за создание электрической проводимости. Именно они определяют вклад электронной теплоемкости в общую теплоемкость кристалла и в значительной степени определяют теплопроводность кристалла.

Уровень Ферми в металлах практически не изменяет своего положения по мере повышения температуры. С ростом температуры степень возбуждения электронов растет, и они переходят на более высоко расположенные уровни. Одновременно с этим возбуждению подвергаются и все более глубоко расположенные уровни, имеющие меньшую энергию. Кривая распределения при Т 2 > Т 1 (см. рис. 50) "размывается" более сильно, чем при T 1 , но в равной степени вправо и влево. Поэтому средняя энергия электронов, принимающих участие в проводимости, остается практически неизменной. Это тем более справедливо, что между возбужденными уровнями идет постоянный обмен электронами.

Энергия Фе́рми (EF) системы невзаимодействующих фермионов - это увеличение энергии основного состояния системы при добавлении одной частицы. Это эквивалентно химическому потенциалу системы в ее основном состоянии при абсолютном нуле температур. Энергия Ферми может также интерпретироваться как максимальная энергия фермиона в основном состоянии при абсолютном нуле температур. Энергия Ферми - одно из центральных понятий физики твёрдого тела. Физический смысл уровня Ферми: вероятность попадания частицы на уровень Ферми составляет 0,5 при любых температурах. Фермио́н (от фамилии физика Энрико Ферми) - по современным научным представлениям: элементарные частицы, из которых складывается вещество. К фермионам относят кварки, электрон, мюон, тау-лептон, нейтрино. В физике, частица (или квазичастица) с полуцелым значением спина. Фермионы подчиняются статистике Ферми - Дирака: в одном квантовом состоянии может находиться не более одной частицы (принцип Паули). Волновая функция системы одинаковых фермионов антисимметрична относительно перестановки двух любых фермионов. Квантовая система, состоящая из нечётного числа фермионов, сама является фермионом (например, ядро с нечётным массовым числом A; атом или ион с нечётной суммой A и числа электронов)

Примеры фермионов: кварки (они формируют протоны и нейтроны, которые также являются фермионами), лептоны (электроны, мюоны, нейтрино), дырки (квазичастицы в полупроводнике). Принцип запрета Паули ответственен за стабильность электронных оболочек атомов, делая возможным существование сложных химических элементов. Он также позволяет существовать вырожденной материи под действием высоких давлений (нейтронные звёзды).Поверхность Ферми - поверхность постоянной энергии в k-пространстве, равной энергии Ферми в металлах или вырожденных полупроводниках. Знание формы поверхности Ферми играет важную роль во всей физике металлов и вырожденных полупроводников, так как благодаря вырожденности электронного газа транспортные свойства его, такие как проводимость, магнетосопротивление зависят только от электронов вблизи поверхности Ферми. Поверхность Ферми разделяет заполненные состояния от пустых при абсолютном нуле температур. Рис. 1. Заполнение энергетических зон при абсолютном нуле температуры: а - в диэлектриках; б - в металлах; разрешенные зоны заштрихованы, заполненные зоны или их части заштрихованы дважды. Рис. 2. Заполнение энергетических зон в полупроводнике; показаны только валентная зона и зона проводимости; чёрные кружочки - электроны в зоне проводимости, белые - дырки в валентной зоне.

15. Собственный полупроводник или полупроводник i-типа (англ. intrinsic - собственный) - это чистый полупроводник, содержание посторонних примесей в котором не превышает 10 −8 … 10 −9 %. Концентрация дырок в нём всегда равна концентрации свободных электронов. Примеры: Si, Ge Полупроводник без примесей называют собственным полупроводником или полупроводником i-типа . Он обладает собственной электропроводностью , которая складывается из электронной и дырочной. Если к полупроводнику не приложено напряжение, то электроны и дырки проводимости совершают хаотическое движение и никакого тока, разумеется, нет. Под действием разности потенциалов в полупроводнике возникает электрическое поле, которое ускоряет электроны и дырки и сообщает им еще некоторое поступательное движение, представляющее собой ток проводимости . Движение носителей заряда под действием электрического поля иначе называется дрейфом носителей , а ток проводимости - током дрейфа i др . Полный ток проводимости складывается из электронного и дырочного токов: i др = i nдр + i pдр Индексы n и p соответственно обозначают электронный и дырочный вклады. Удельная проводимость зависит от концентрации носителей и от их подвижности. В полупроводниках при повышении температуры вследствие интенсивной генерации пар носителей концентрация подвижных носителей увеличивается значительно быстрее, нежели уменьшается их подвижность, поэтому с повышением температуры проводимость растет. Для изготовления полупроводников применяют в основном германий и кремний, а также некоторые соединения галлия, индия и пр. Для полупроводников характерен отрицательный температурный коэффициент электрического сопротивления. При возрастании температуры сопротивление полупроводников уменьшается, а не увеличивается, как у большинства твердых проводников. Кроме того электрическое сопротивление полупроводников очень сильно зависит от количества примесей (и от типа примесей тоже), а также таких внешних воздействий, как свет, электрическое поле, ионизирующее излучение и т. д. (на этом основан принцип действия фотодиодов, фототранзисторов, магнитоуправляемых приборов и т. п.) Принцип работы полупроводниковых приборов связан с тем, что в полупроводниках существует электропроводность двух типов - электронная и дырочная. Электронная электропроводность характерна для металлов и обусловлена перемещением электронов проводимости. При обычных рабочих температурах в полупроводниках всегда имеются электроны проводимости, которые очень слабо связаны с ядрами атомов и совершают беспорядочное тепловое движение (колебания) между атомами кристаллической решетки. Эти электроны под действием разности потенциалов могут начать двигаться в определенном направлении. Это движение и есть электрический ток. Полупроводники обладают также дырочной электропроводностью, которая редко наблюдается в металлах. Электроны и дырки, которые могут перемещаться, а потому создавать электропроводность, называются подвижными носителями заряда или просто носителями заряда. Весь этот процесс принято называть генерация пар носителей заряда, то есть возникают пары электрон проводимости-дырка проводимости. Вследствие того, что электроны и дырки совершают хаотическое движение, обязательно происходит и процесс, обратный генерации пар носителей. Электроны проводимости снова занимают свободные места в валентной зоне (падающий сверху кружочек на рисунке), то есть объединяются с дырками. Такое исчезновение пар носителей называется рекомбинацией носителей заряда. Процессы генерации и рекомбинации всегда происходят одновременно. Рекомбинация ограничивает возрастание пар носителей, и при каждой данной температуре устанавливается определенное число электронов и дырок проводимости, то есть они находятся в состоянии динамического равновесия.Так же следует отметить, что проводимость чистых полупроводников, значительно ниже примесных. Это связанно с тем, что свободных носителей заряда в примесных значительно больше.

16. Примесные полупроводники Примесный полупроводник - это полупроводник, элек­т­ро­­­фи­зи­­чес­кие свойства которого определяются, в основном, при­ме­ся­­ми дру­гих химических элементов. Процесс вве­дения примесей в по­­лу­­про­водник называется леги­ро­ва­нием полупроводника, а са­ми при­­­­меси называют леги­ру­ю­щи­ми. Для равномерного распре­де­­ле­­ния легирующей примеси в объ­еме полупроводника ле­ги­ро­ва­­ние осу­­щест­в­ля­ет­ся в процессе вы­ращивания монокристалла по­лу­­про­вод­ника из жидкой или га­зо­образной фазы. Локальное ле­ги­­ро­ва­ние части объема полу­про­водника­, например, при­по­ве­р­х­ностной об­­ла­сти, производится методом диффузии при силь­ном нагреве полупроводника или низкотемпературными методами ион­ного ле­ги­ро­вания. Роль примесей могут играть и всевозможные дефекты стру­к­ту­ры кри­­сталлической решетки полупроводника, такие как вакан­сии, ме­ж­ду­узельные атомы, дислокации. При малой концентрации примесей (10 21 ...10 23 м -3) примесные атомы со­­з­­дают дополнительные дискретные энергетические уровни в за­­п­ре­щенной зоне полупроводника. Такой полупроводник на­зы­ва­ется не­вы­рожденным. Повышение концентрации примесных ато­­мов в полупроводнике до 10 24 ...10 25 м -3 сопровождается поя­в­ле­нием в за­пре­щенной зоне по­лу­про­водника вместо дискретных уров­ней зон при­­мес­ных уров­ней. Такие полупроводники на­зы­ва­ют вы­рож­ден­ными. Различают два основных вида примесей, которые ис­поль­зую­т­­ся для преднамеренного легирования полупроводников и соз­да­ю­­щих преимущественно электронный или дырочный тип про­во­ди­­мо­сти. Примеси, введение которых в полупроводник соз­да­­ет эле­к­т­ронный тип проводимости, называются донорными. При­­месь, соз­да­ющая дырочную про­води­мость, называется акцеп­тор­ной. Если к полупроводнику n-типа приложить электрическое поле, то каждый отрицательный носитель приобретет в этом поле ускорение, набирая скорость до тех пор, пока не рассеется на одном из донорных узлов. Это означает, что носители, которые обычно движутся случайным образом, имея при этом тепловую энергию, начнут в среднем повышать свою скорость дрейфа вдоль линий электрического поля, вызвав ток через кристалл. Скорость дрейфа, как правило, по сравнению с типичными тепловыми скоростями очень мала, так что можно, прикидывая величину тока, принять, что от столкновения к столкновению среднее время странствий носителя постоянно. Допустим, что эффективный электрический заряд отрицательного носителя равен q n . Сила, действующая на носитель в электрическом поле E, будет равна q n E. В гл. 43, §3 (вып. 4) мы как раз подсчитывали среднюю скорость дрейфа в таких условиях и нашли, что она равна Fτ/m, где F - сила, действующая на заряд; т - среднее время свободного пробега между столкновениями, а т - масса. Вместо нее надо поставить эффективную массу, которую мы подсчитывали в предыдущей главе, но поскольку нас интересует только грубый расчет, то предположим, что эта эффективная масса во всех направлениях одинакова. Мы ее здесь обозначим т n . В этом приближении средняя скорость дрейфа будет равна

Мы видим, что плотность тока пропорциональна электрическому полю; такие полупроводниковые материалы подчиняются закону Ома. Коэффициент пропорциональности между j и E, или проводимость σ, равен

Для материалов n-типа проводимость в общем не зависит от температуры. Во-первых, общее число основных носителей N n определяется главным образом плотностью доноров в кристалле (пока температура не настолько низка, чтобы позволять атомам захватить чересчур много носителей), а, во-вторых, среднее время от соударения к соударению, τ n , регулируется главным образом плотностью атомов примеси, а она, ясное дело, от температуры не зависит. Те же рассуждения можно приложить к веществу р-типа, переменив только значения параметров, которые появляются в (12.7). Если в одно и то же время имеется сравнимое количество отрицательных и положительных носителей, то вклады носителей обоего рода надо сложить. Полная проводимость определится из Для очень чистых веществN р и N n примерно равны. Они будут меньше, чем у материалов с примесями, так что и проводимость будет меньше. Кроме того, они будут резко меняться с температурой (по закону е –Е щели /xТ ), так что проводимость с температурой может меняться чрезвычайно быстро.

Функция распределения для вырожденного коллектива фермионов впервые была получена итальянским физиком Энрико Ферми и английским физиком Полем Дираком:

Химический потенциал μ для фермионов обычно называют энергией , или уровнем Ферми Е Ф .

Анализ выражения показывает, что при Е =Е Ф и температуре Т >0, f Ф (Е )=½, т.е. вероятность заселения уровня Ферми при Т >0 равна ½.

Для того чтобы понять свойства функции Ферми-Дирака, полезно рассмотреть ее поведение при Т =0. Проводник можно представить в виде потенциальной ямы для электронов, выход из которой требует совершения работы по преодолению сил связи, удерживающих электроны – работы выхода (рис. 3.3, а ). На рисунке показаны энергетические уровни, которые могут занимать электроны. Согласно постулату Паули, на каждом уровне может располагаться не более двух электронов (с противоположными спинами).

а ) б )

Рис. 3.3. Электроны в проводнике: а Т =0; б Т >0

Как видно на рисунке, при Т =0 все уровни ниже уровня Ферми заняты, а все уровни выше этого уровня пусты, т.е. функция f Ф (Е ) при Т =0 имеет форму ступеньки (рис. 3.4, а ).

а ) б )

Рис. 3.4. Распределение Ферми-Дирака: а – функция распределения Ф-Д;
б – полная функция распределения

Таким образом можно определить физический смысл уровня Ферми, но только для проводников. В случае полупроводников или изоляторов это определение неприемлемо, поскольку в этих материалах недостаточно свободных электронов и уровень Ферми находится в запрещенной зоне (п. 4.5).

Умножив функцию распределения (3.20) на число состояний (3.13), получим выражение для полной функции распределения при Т =0 (рис. 3.4, б )

поскольку в интервале Е Ф Е >0, f Ф (Е )=1.

Проинтегрировав (3.21) в указанном интервале энергий, будем иметь выражение для энергии Ферми:

, (3.22)

где n – концентрация электронного газа в проводнике.

Используя выражение (3.21), можно получить формулы для вычисления средней энергии – и максимальной скорости электронов при абсолютном нуле

Необходимо отметить, что кинетическая энергия электронов Е Ф не является тепловой энергией, а имеет чисто квантовую природу и определяется свойствами электронов как Ферми-частиц.

С повышением температуры электроны подвергаются тепловому возбуждению и переходят на более высокие энергетические уровни (см. рис. 3.3, б). Происходит “размывание” функций распределения (см.
рис. 3.4), и ступенька Е =Е Ф преобразуется в интервал, ширина которого равна 2kT . Однако более глубокие состояния электронов остаются неизменными.

Проведенные расчеты показывают, что число термически возбужденных частиц составляет для комнатной температуры всего 1...2% от общего числа. Если проинтегрировать полную функцию распределения во всем энергетическом диапазоне, то можно получить выражение для температурной зависимости энергии Ферми

, (3.25)

где Е Ф о – энергия Ферми для Т =0К (3.22).

Напомним, что тепловое возбуждение так незначительно влияет на характеристики вырожденного Ферми-газа, что во многих случаях этим влиянием можно пренебречь и считать Е Ф =Е Ф о во всем температурном диапазоне.

Можно также вычислить среднюю энергию электронов при ненулевой температуре Т >0

, (3.26)

где Е п – полная энергия электронного газа.

Ранее мы говорили о Ферми-газе, считая его вырожденным коллективом. Однако, в случае выполнения критерия (3.11) G >>N , можно говорить о снятии вырождения. Тогда критерий невырожденности (3.11) примет вид

(3.27)

или в случае Е =0

Из последнего соотношения следует, что для невырожденного Ферми-газа должно выполняться условие

-Е Ф > kT (3.29)

При выполнении условия (3.27) единицей в знаменателе выражения (3.20) можно пренебречь, и выражение (3.20) совпадает с формулой для функции Максвелла-Больцмана.

В проводниках, где концентрация электронов высока, электронный газ всегда находится в вырожденном состоянии. С невырожденным электронным газом приходится сталкиваться в собственных (беспримесных) и слаболегированных (10 16 ...10 24 м -3) полупроводниках. При таких условиях выполняется критерий (3.11) и электронный газ млжно считать невырожденным. Поэтому уместно, на наш взгляд, привести таблицу, где содержатся основные характеристики электронного газа: его средняя энергия, квадратичная скорость υ кв , импульс P (табл. 3.2).

Таблица 3.2

Параметры электронного газа

Параметры газа Газ
невырожденный вырожденный
, Т =0 Т >0
J кв , Т =0 Т >0 м/с
Р , Т =0 Т >0 ≈10 10 Па Р Р 0

Из данных таблицы видно, что параметры вырожденного газа в отличие от газа невырожденного при нулевой температуре не равны нулю и практически не зависят от температуры. Это, в свою очередь, говорит о нетепловом квантовомеханическом характере данных процессов.

Для определения числа частиц, имеющих энергию в заданном интервале, помимо плотности квантовых состояний N(W) необходимо знать вероятность того, что данное состояние с энергией W занято частицей, т.е. нужно знать функцию распределения f(W ). В условиях теплового равновесия для частиц с полуцелым спином, подчиняющихся принципу Паули, справедливо распределение Ферми – Дирака

где k – постоянная Больцмана; Т – абсолютная температура; W F – энергия Ферми или электрохимический потенциал, т.е. работа, которую необходимо затратить для изменения числа частиц в системе на единицу при условии постоянства объема и температуры.

Рассмотрим вид функции распределения Ферми – Дирака при различных температурах. Из формулы следует, что в случае Т = 0 в интервале энергии имеем f n = 1 и f n = 0 для . Это означает, что все квантовые состояния с энергией, меньшей энергии Ферми, заняты электронами, а уровни, лежащие выше уровня Ферми, полностью свободны, не заняты электронами. Следовательно, энергия Ферми есть максимально возможная энергия электронов в металле при температуре абсолютного нуля.

Рассмотрим случай, когда Т > 0. Из распределения Ферми – Дирака для значения энергии, равной значению энергии Ферми (W = W F ), имеем f n = 1/2. Таким образом, уровень Ферми есть энергетический уровень, вероятность наполнения которого при температуре, отличной от абсолютного нуля, равна 0,5. При Т > 0 часть электронов в результате теплового движения перейдет в состояния с энергией, большей энергии ферми (W > W F ), и соответственно часть состояний, находящихся ниже уровня Ферми, окажется свободной. В этом случае число частиц, перешедших на более высокие энергетические уровни, будет равно количеству образовавшихся свободных состояний в области W < W F .

Произведем оценку области изменения функции распределения f n (W ) для случая Т > 0. Для этого подсчитаем f n (W ) для разных значений энергии. Для энергий, отличающихся от W F на ± kT , значение на f n (W ) составляет (1+е ) -1 = 0,27 и (1+1/е ) -1 = 0,73. При W - W F = ± 2kT значения f n равны 0,118 и 0,882 , а при W - W F = ± 3kT – 0,047 и 0,953. Из этих данных следует, что вероятность заполнения состояний заметно отличается от единицы или нуля лишь в пределах (23) kT вблизи значения W = W F (рис. 1).

Рис. 1. Вид функции распределения Ферми – Дирака

Функция распределения Ферми – Дирака характеризует вероятность заполнения данного квантового состояния электроном. Вероятность того, что при тепловом равновесии в состоянии с энергией W электрон отсутствует, т.е. оно занято дыркой, будет равна:

Следовательно, функция распределения для дырок аналогична функции распределения для электронов, если отсчитывать энергию дырок от уровня Ферми в противоположную сторону по сравнению с направлением отсчета энергии для электронов.



Для электронов, находящихся в состояниях с энергией W – W F >> kT , выражения для f n и f p имеют вид:

,

т.е. совпадают с функцией распределения Больцмана для частиц, подчиняющихся классической статистике. Если носители заряда подчиняются статистике Больцмана, то электронный газ невырожден и соответственно полупроводник с таким распределением носителей заряда принято называть невырожденным.

Таким образом, для большинства полупроводников (невырожденных)можно пользоваться статистикой Максвелла - Больцмана и только в некоторых случаях для полупроводников (вырожденных)необходимо использовать статистику Ферми - Дирака. Разница в этих двух функциях распределения электронов по энергиям показана на рис. 2.

Положение уровня Ферми в полупроводнике будет определять и дрейфовую и диффузионную составляющие тока.

Одно из фундаментальных положений физики твердого тела – постоянство (одинаковость) уровня Ферми для всех частей равновесной системы твердых тел, какой бы разнородной оно не была. Другими словами, в условиях равновесия, когда направленного движения носителей заряда нет, должно иметь место условие: , т.е. , тогда ток в полупроводнике .

W-W F (эВ)
f n (W)

Рис. 2. Вероятность заполнения электронами энергетических уровней при различных температурах: сплошная – по статистике Ферми-Дирака, пунктир – по статистике Максвелла-Больцмана для электронов в зоне проводимости и в валентной зоне

Для собственного полупроводника уровень Ферми определяется выражением: ,

где – эффективная масса дырок и электронов соответственно.

При температуре абсолютного нуля уровень Ферми для собственного полупроводника лежит в середине запрещенной зоны. У собственного полупроводника скорость изменения уровня Ферми с температурой пропорциональна отношению эффективных масс дырок и электронов. В результате этого с повышением температуры уровень Ферми отдаляется от зоны с тяжелыми носителями заряда, приближаясь к зоне с легкими носителями заряда. Например, при уровень Ферми с повышением температуры линейно смещается к днй зоны проводимости. И если расстояние от уровня Ферми до этой зоны становится соизмеримо с kT , то в ней наступает вырождение и соответствующий интеграл Ферми – Дирака уже не может быть заменен экспонентой. При этом, чем сильнее различаются эффективные массы электронов и дырок, тем раньше наступает вырождение.

В случае положение уровня Ферми не зависит от температуры и определяется серединой запрещенной зоны: .

Более точный анализ показывает, что сама ширина запрещенной зоны изменяется с температурой. Рост амплитуды тепловых колебаний атомов решетки приводит к ее уменьшению. Кроме того, с увеличением температуры изменяются межатомные расстояния, что также оказывает влияние на ширину запрещенной зоны. В результате зависимость ΔW з(Т ) может иметь сложный характер. В качестве примера на рис. 3 показаны изменения ширины запрещенной зоны в зависимости от температуры для германия, кремния и арсенида галлия.

Рис. 3. Зависимость ширины запрещенной зоны германия, кремния и арсенида галлия от температуры

Для этих полупроводников значения ширины запрещенной зоны при 0 К составляют 0,89; 1,16 и 1,52 эВ соответственно. У них, как следует из рис. 3, в диапазоне температур 175 – 350 К ширина запрещенной зоны меняется линейно с температурой. При этом температурный коэффициент изменения ширины запрещенной зоны α = d ΔW з/dT < 0 зависит от материала полупроводника (табл. 1). У PbS α < 0, ширина запрещенной зоны возрастает от 0,34 эВ при 0 К до 0,41 эВ при 300 К.

Таблица 1

Температурный коэффициент изменения ширины запрещенной зоны

В этих случаях зависимость подчиняется линейному закону вида

где ΔW з(0) – экстраполированная ширина запрещенной зоны при 0 К.

Теоретический анализ показывает:

откуда следует, что

Таким образом, если ширина запрещенной зоны полупроводника линейно зависит от температуры, график зависимости ln(n i T -3/2) от 1/Т также представляет собой прямую линию, наклон которой характеризуется значением ΔW з(0), которое является экстраполированной шириной запрещенной зоны при 0 К. Истинное значение ширины запрещенной зоны полупроводника при данной температуре определяется по формуле .

Для примесных полупроводников уровень Ферми можно определить из соотношений (справедливы для Т ≠ 0 К):

,

,

где N C , N V – эффективная плотность разрешенных уровней в зоне проводимости и валентной зоне соответственно, N Д, N А – количество донорных и акцепторных уровней (степень легирования).

При решении задач удобнее использовать следующие соотношения (справедливы для Т ≠ 0 К):

,

.

Таким образом, положение уровня Ферми в примесных полупроводниках зависит от температуры, степени легирования и ширины запрещенной зоны.

Для определения поведения уровня Ферми в области низких температур необходимо уточнить функцию Ферми – Дирака для примесных полупроводников.

Рассмотрим полупроводник, содержащий донорную примесь с концентрацией N Д. Если бы на примесном уровне согласно принципу Паули могли расположиться 2 электрона с антипараллельными спинами, то вероятность его заполнения определялась бы Ферми – Дирака

в которой вместо W следовало бы поставить W Д – энергию электрона на уровне примеси. Но на уровне W Д может быть только один электрон (атом донора может удержать один электрон), следовательно, нейтральное состояние донорной примеси имеет вдвое больший статистический вес по сравнению с ионизированным состоянием. Тогда вероятность нахождения электрона на донорном уровне с энергией W Д будет определяться выражением

Предэкспоненциальный множитель 1/2 в общем случае можно записать через g -1 . Таким образом, для одновалентной донорной примеси (может отдать для участия в проводимости только 1 электрон), примесный уровень двукратно вырожден и фактор (степень) спинового вырождения g = 2.

Аналогично для акцепторного полупроводника, например кремния, легированного бором. Нейтральный атом бора с соседними атомами кремния образует 3 ковалентных связи, четвертая связь одного из четырех соседних атомов кремния остается незавершенной, и она, располагаясь около атома бора, ведет себя как положительная дырка. В эту незавершенную связь может перейти электрон от соседнего атома кремния, и для этого потребуется энергия, равная W А. В результате образуется свободная дырка, а атом бора превращается в отрицательно заряженный ион бора. Таким образом, на энергетическом уровне акцепторной примеси находится 1 электрон с произвольным направлением спина (нейтральное состояние акцепторной примеси) либо имеется 2 электрона с антипараллельными спинами, в случае когда атом акцепторной примеси для укомплектования парной связи захватывает электрон из валентной зоны (ионизированное состояние акцепторной примеси). Следовательно, степень вырождения акцепторного уровня g = 2.

В области низких температур (рис. 4) положение уровня Ферми будет определяться соотношением вида

где – g фактор спинового вырождения,

а энергия активации будет:

т.е. равна половине энергии ионизации донорной примеси. В невырожденном донорном полупроводнике при температуре абсолютного нуля уровень Ферми располагается посередине между дном зоны проводимости и уровнем донорной примеси.

Строгий теоретический анализ показывает, что в области достаточно низких температур (несколько градусов по шкале Кельвина), когда gN c <N Д, уровень Ферми вначале повышается до некоторого максимального значения, а затем начинает снижаться и при gN c =N d снова имеем W F =1/2 (W П + W Д), как и для случая Т=0. Дальнейшее повышение температуры сопровождается ростом N c и в области температуры, когда gN c >N Д, уровень Ферми продолжает снижаться. Такому перемещению уровня Ферми соответствует экспоненциальная температурная зависимость концентрации электронов

Эта область изменения уровня Ферми с температурой, которая описывается предыдущей формулой, является областью слабой ионизации примеси (или областью вымораживания). Она обозначена цифрой 1 на рис. 4, на котором проиллюстрировано изменение уровня Ферми и концентрации электронов в зависимости от температуры для донорного полупроводника.

Рис. 4. Изменение положения уровня Ферми (а ) и концентрации электронов (б ) с температурой для донорного полупроводника

При дальнейшем повышении температуры концентрация электронов в зоне проводимости становится сравнимой с концентрацией примеси и предыдущие выражения для W F и n n в этом случае неприменимы. Однако теперь можно рассматривать другой крайний случай, когда температура достаточно высока и выполняется неравенство

При этом функция Ферми аппроксимируется выражением , которому соответствует:

Это означает, что практически вся донорная примесь ионизирована, и концентрация электронов в зоне проводимости не зависит от температуры. Эта область температур, при которой имеет место полная ионизация примеси, носит название области истощения примеси (или область полной ионизации примеси) и на рис.4 отмечена цифрой 2.

Условие полной ионизации донорной примеси, когда n n = N Д , соответствует положению уровню Ферми на несколько kT ниже уровня примеси W Д. Это значит, что при повышении температуры уровень Ферми, понижаясь, пересекает уровень W Д и уходит вниз. Температура, при которой W F = W Д, носит название температуры истощения T S , ее можно определить из условия

Как следует из выражения, температура истощения тем ниже, чем меньше энергия ионизации (W П – W Д), и концентрация донорной примеси N Д и чем больше эффективная масса электронов, определяющая величину N С . При малых значениях (W П – W Д) истощение примеси наступает при очень низких температурах. Например, в электронном германии, легированном сурьмой в количестве N Д = 10 16 см -3 , для которой энергия ионизации равна 0,0096 эВ, насыщение наступает уже при Т S = 32К.

При дальнейшей повышении температуры увеличение концентрации электронов в зоне проводимости будет осуществляться за счет переходов электронов из валентной зоны. В этом случае положение уровня Ферми и концентрация электронов будут определяться уравнениями для W Fi . и n i . На рис. 4 область 3 соответствует области собственной проводимости. В этом случае W Fi и можно определить

Отсюда получаем

Анализ этого выражения показывает, что температура T i , при которой наступает собственная проводимость у донорного полупроводника, тем ниже, чем меньше ширина запрещенной зоны и концентрация примеси и чем больше значение эффективных масс носителей заряда.

Таким образом, используя описанные приближения, можно проследить изменение концентрации электронов и положения уровня Ферми в запрещенной зоне электронного полупроводника во всей области изменения температуры.

В качестве примера на рис. 5 приведены температурные зависимости уровня Ферми и концентрация равновесных электронов n 0 и дырок р 0 для германия, легированного сурьмой в количестве N Д ≈ 10 16 см -3 . Кроме того, на этих кривых пунктиром показан ход W Fi и n i в собственном германии. При построении графиков учтена зависимость ширины запрещенной зоны германия от температуры.

Рис. 5. Температурная зависимость уровня Ферми (а) и концентрации носителей заряда (б) для германия, легированного сурьмой

Из этого рисунка следует, что при температуре абсолютного нуля уровень Ферми в германии расположен посередине между дном зоны проводимости W П и уровнем донорной примеси W Д. При повышении температуры он опускается и приближается к уровню примеси W Д. При температуре насыщения T S на донорной примеси электроны находятся в количестве, равном:

а в зоне проводимости соответственно 1/3 N Д электронов. С дальнейшим ростом температуры уровень Ферми продолжает опускаться и наступает область истощения; вся примесь ионизирована, и концентрация электронов проводимости остается постоянной и равной n n = N Д. В этой температурной области имеет место уже ионизация атомов основного вещества, и появляются неосновные носители заряда – дырки. Их концентрация резко возрастает с ростом температуры согласно соотношению

Когда уровень Ферми достигает середины запрещенной зоны, то n n = p n = n i и полупроводник от примесного переходит к собственному. При дальнейшем повышении температуры уровень Ферми приближается к той зоне, которая имеет меньшую эффективную плотность состояний.

Уровень Ферми для кремния в зависимости от концентрации примесей и температуры приведен на рис. 6. Здесь же приведена зависимость ширины запрещенной зоны от температуры.

Рис. 6. Зависимость уровня Ферми в кремнии от температуры и концентрации примесей

В акцепторном полупроводнике, как и в случае донорной примеси, при высоких температурах наступает область истощения, характеризующаяся полной ионизацией атомов акцепторной примеси. С дальнейшим ростом температуры уровень Ферми поднимается к середине запрещенной зоны, и полупроводник ведет себя как собственный.

1. При Т = 300ºК уровень Ферми в n-полупроводнике лежит, как правило, ниже уровня донорной примеси W Д, но выше середины запрещенной зоны.
В p-полупроводнике уровень Ферми расположен выше уровня акцепторной примеси W А, но ниже середины запрещенной зоны.

2. Чем сильнее легирован полупроводник n-типа, тем ближе уровень Ферми к дну зоны проводимости, для p-типа: чем больше акцепторной примеси, тем ближе уровень Ферми к валентной зоне. Таким образом, чем сильнее легирован полупроводник, тем ближе уровень Ферми к зоне, отвечающей за тип проводимости (зона основных носителей заряда).

3. С ростом температуры уровень Ферми в n-полупроводнике снижается к середине запрещенной зоны, а в p-полупроводнике повышается к середине запрещенной зоны, т.е. примесный полупроводник ведет себя как собственный.

4. Чем сильнее легирован материал, тем выше максимальная рабочая температура прибора, использующего примесный характер полупроводника.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама