THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

3. Замкнутые СМО

До сих пор мы рассматривали системы, в которых входящий поток никак не связан с выходящим. Такие системы называются разомкнутыми. В некоторых же случаях обслуженные требования после задержки опять поступают на вход. Такие СМО называются замкнутыми. Поликлиника, обслуживающая данную территорию, бригада рабочих, закрепленная за группой станков, являются примерами замкнутых систем.

В замкнутой СМО циркулирует одно и то же конечное число потенциальных требований. Пока потенциальное требование не реализовалось в качестве требования на обслуживание, считается, что оно находится в блоке задержки. В момент реализации оно поступает в саму систему. Например, рабочие обслуживают группу станков. Каждый станок является потенциальным требованием, превращаясь в реальное в момент своей поломки. Пока станок работает, он находится в блоке задержки, а с момента поломки до момента окончания ремонта - в самой системе. Каждый рабочий является каналом обслуживания.

Пусть n - число каналов обслуживания, s - число потенциальных заявок, n

Вероятность простоя системы определяется формулой

Р 0 = .

Финальные вероятности состояний системы:

P k = при k

Через эти вероятности выражается среднее число занятых каналов

P 1 +2P 2 +…+n(P n +P n+ 1 +…+P s) или

P 1 +2P 2 +…+(n-1)P n- 1 +n(1-P 0 -P 1 -…-P n-1).

Через находим абсолютную пропускную способность системы:

а также среднее число заявок в системе

Пример 1. На вход трехканальной СМО с отказами поступает поток заявок с интенсивностью =4 заявки в минуту, время обслуживания заявки одним каналом t обсл =1/μ =0,5 мин. Выгодно ли с точки зрения пропускной способности СМО заставить все три канала обслуживать заявки сразу, причем среднее время обслуживания уменьшается втрое? Как это скажется на среднем времени пребывания заявки в СМО?

Решение. Находим вероятность простоя трехканальной СМО по формуле

ρ = /μ =4/2=2, n=3,

Р 0 = = = 0,158.

Вероятность отказа определяем по формуле:

Р отк =Р n ==

P отк = 0,21.

Относительная пропускная способность системы:

Р обсл =1-Р отк 1-0,21=0,79.

Абсолютная пропускная способность системы:

А= Р обсл 3,16.

Среднее число занятых каналов определяем по формуле:

1,58, доля каналов, занятых обслуживанием,

Cреднее время пребывания заявки в СМО находим как вероятность того, что заявка принимается к обслуживанию, умноженную на среднее время обслуживания: t СМО 0,395 мин.

Объединяя все три канала в один, получаем одноканальную систему с параметрами μ=6, ρ=2/3. Для одноканальной системы вероятность простоя:

Р 0 = = =0,6,

вероятность отказа:

Р отк =ρ Р 0 = =0,4,

относительная пропускная способность:

Р обсл =1-Р отк =0,6,

абсолютная пропускная способность:

А= Р обсл =2,4.

t СМО =Р обсл = =0,1 мин.

В результате объединения каналов в один пропускная способность системы снизилась, так как увеличилась вероятность отказа. Среднее время пребывания заявки в системе уменьшилось.

Пример 2. На вход трехканальной СМО с неограниченной очередью поступает поток заявок с интенсивностью =4 заявки в час, среднее время обслуживания одной заявки t=1/μ=0,5 ч. Найти показатели эффективности работы системы.

Для рассматриваемой системы n=3, =4, μ=1/0,5=2, ρ= /μ=2, ρ/n=2/3<1. Определяем вероятность простоя по формуле:

Р=.

P 0 = =1/9.

Среднее число заявок в очереди находим по формуле:

L=.

Среднее время ожидания заявки в очереди считаем по формуле:

Среднее время пребывания заявки в системе:

Т=t+ 0,22+0,5=0,72.

Пример 3. В парикмахерской работают 3 мастера, а в зале ожидания расположены 3 стула. Поток клиентов имеет интенсивность =12 клиентов в час. Среднее время обслуживания t обсл =20 мин. Определить относительную и абсолютную пропускную способность системы, среднее число занятых кресел, среднюю длину очереди, среднее время, которое клиент проводит в парикмахерской.

Для данной задачи n=3, m=3, =12, μ=3, ρ=4, ρ/n=4/3. Вероятность простоя определяем по формуле:

Р 0 =.

P 0 = 0,012.

Вероятность отказа в обслуживании определяем по формуле

Р отк =Р n+m = .

P отк =P n + m 0,307.

Относительная пропускная способность системы, т.е. вероятность обслуживания:

P обсл =1-P отк 1-0,307=0,693.

Абсолютная пропускная способность:

А= Р обсл 12 .

Среднее число занятых каналов:

.

Средняя длина очереди определяется по формуле:

L=

L= 1,56.

Среднее время ожидания обслуживания в очереди:

Среднее число заявок в СМО:

Среднее время пребывания заявки в СМО:

Т=М/ 0,36 ч.

Пример 4. Рабочий обслуживает 4 станка. Каждый станок отказывает с интенсивностью =0,5 отказа в час, среднее время ремонта t рем =1/μ=0,8 ч. Определить пропускную способность системы.

Эта задача рассматривает замкнутую СМО, μ=1,25, ρ=0,5/1,25=0,4. Вероятность простоя рабочего определяем по формуле:

Р 0 =.

P 0 = .

Вероятность занятости рабочего Р зан =1-Р 0 . А=(1-P 0)μ=0,85μ станков в час.


Решение задачи

Два рабочих обслуживают группу из четырех станков. Остановки работающего станка происходят в среднем через 30 мин. Среднее время наладки составляет 15 мин. Время работы и время наладки распределено по экспоненциальному закону.

Найдите среднюю долю свободного времени для каждого рабочего и среднее время работы станка.

Найдите те же характеристики для системы, в которой:

а) за каждым рабочим закреплены два станка;

б) два рабочих всегда обслуживают станок вместе, причем с двойной интенсивностью;

в) единственный неисправный станок обслуживают оба рабочих сразу (с двойной интенсивностью), а при появлении еще хотя бы одного неисправного станка они начинают работать порознь, причем каждый обслуживает один станок (вначале опишите систему в терминах процессов гибели и рождения).

Возможны следующие состояния системы S:

S 0 – все станки исправны;

S 1 – 1 станок ремонтируется, остальные исправны;

S 2 – 2 станок ремонтируется, остальные исправны;

S 3 – 3 станок ремонтируется, остальные исправны;

S 4 – 4 станок ремонтируется, остальные исправны;

S 5 – (1, 2) станки ремонтируются, остальные исправны;

S 6 – (1, 3) станки ремонтируются, остальные исправны;

S 7 – (1, 4) станки ремонтируются, остальные исправны;

S 8 – (2, 3) станки ремонтируются, остальные исправны;

S 9 – (2, 4) станки ремонтируются, остальные исправны;

S 10 – (3, 4) станки ремонтируются, остальные исправны;

S 11 – (1, 2, 3) станки ремонтируются, 4 станок исправен;

S 12 – (1, 2, 4) станки ремонтируются, 3 станок исправен;

S 13 – (1, 3, 4) станки ремонтируются, 2 станок исправен;

S 14 – (2, 3, 4) станки ремонтируются, 1 станок исправен;

S 15 – все станки ремонтируются.

Граф состояний системы…

Данная система S является примером замкнутой системы, так как каждый станок является потенциальным требованием, превращаясь в реальное в момент своей поломки. Пока станок работает, он находится в блоке задержки, а с момента поломки до момента окончания ремонта – в самой системе. Каждый рабочий является каналом обслуживания.

Если рабочий занят, он налаживает μ-станков в единицу времени, пропускная способность системы:

Средняя доля свободного времени для каждого рабочего ≈ 0,09.

Среднее время работы станка ≈ 3,64.

а) За каждым рабочим закреплены два станка.

Вероятность простоя рабочего определяется по формуле:

Вероятность занятости рабочего:

Если рабочий занят, он налаживает μ-станков в единицу времени, пропускная способность системы:

Средняя доля свободного времени для каждого рабочего ≈ 0,62.

Среднее время работы станка ≈ 1,52.

б) Два рабочих всегда обслуживают станок вместе, причем с двойной интенсивностью.

в) Единственный неисправный станок обслуживают оба рабочих сразу (с двойной интенсивностью), а при появлении еще хотя бы одного неисправного станка они начинают работать порознь, причем каждый обслуживает один станок (вначале опишите систему в терминах процессов гибели и рождения).

Сравнение 5 ответов:

Наиболее эффективным способом организации рабочих за станками будет являться начальный вариант задачи.


Заключение

Выше были рассмотрены примеры простейших систем массового обслуживания (СМО). Понятие «простейшие» не означает «элементарные». Математические модели этих систем применимы и успешно используются в практических расчетах.

Возможность применения теории принятия решений в системах массового обслуживания определяется следующими факторами:

1. Количество заявок в системе (которая рассматривается как СМО) должно быть достаточно велико (массово).

2. Все заявки, поступающие на вход СМО, должны быть однотипными.

3. Для расчетов по формулам необходимо знать законы, определяющие поступление заявок и интенсивность их обработки. Более того, потоки заявок должны быть Пуассоновскими.

4. Структура СМО, т.е. набор поступающих требований и последовательность обработки заявки, должна быть жестко зафиксирована.

5. Необходимо исключить из системы субъектов или описывать их как требования с постоянной интенсивностью обработки.

К перечисленным выше ограничениям можно добавить еще одно, оказывающее сильное влияние на размерность и сложность математической модели.

6. Количество используемых приоритетов должно быть минимальным. Приоритеты заявок должны быть постоянными, т.е. они не могут меняться в процессе обработки внутри СМО.

В ходе выполнения работы была достигнута основная цель – изучен основной материал «СМО с ограниченным временем ожидания» и «Замкнутые СМО», которая была поставлена преподавателем учебной дисциплины. Также мы ознакомились применением полученных знаний на практике, т.е. закрепили пройденный материал.


Список литературы

1) http://www.5ballov.ru.

2) http://www.studentport.ru.

3) http://vse5ki.ru.

4) http://revolution..

5) Фомин Г.П. Математические методы и модели в коммерческой деятельности. М: Финансы и статистика, 2001.

6) Гмурман В.Е. Теория вероятностей и математическая статистика. М: Высшая школа, 2001.

Остальных состояний системы. В результате получим систему уравнений: Решение этой системы будет иметь вид: (4) ,…, (5) 4. Основные понятия и классификация систем массового обслуживания Заявкой (или требованием) называется спрос на удовлетворение какой-либо потребности (далее потребности предполагаются однотипными). Выполнение...

2-3 Поиск литературы 7 1 7 2-4 Разработка модели разветвленной СМО 6 1 6 3 Поиск литературы завершен 3-6 Изучение литературы по теории массового обслуживания 10 1 10 4 Модель разработана 4-5 Разработка алгоритма программы 10 1 10 5 Алгоритм программы разработан 5-7 Выбор среды программиро-вания и создание программы 30 1 ...

Очередь длины k, остается в ней с вероятностью Pk и не присоединяется к очереди с вероятностью gk=1 - Pk,". именно так обычно ведут себя люди в очередях. В системах массового обслуживания, являющихся математическими моделями производственных процессов, возможная длина очереди ограничена постоянной величиной (емкость бункера, например). Очевидно, это частный случай общей постановки. Некоторые...

До сих пор мы рассматривали такие системы массового обслуживания, где заявки приходили откуда-то извне интенсивность потока заявок не зависела от состояния самой системы. В настоящем параграфе мы рассмотрим системы массового обслуживания другого типа - такие, в которых интенсивность потока поступающих заявок зависит от состояния самой СМО. Такие системы массового обслуживания называются замкнутыми.

В качестве примера замкнутой СМО рассмотрим следующую систему. Рабочий-наладчик обслуживает станков. Каждый станок может в любой момент выйти из строя и потребовать обслуживания со стороны наладчика. Интенсивность потока неисправностей каждого станка равна X. Вышедший из строя станок останавливается. Если в этот момент рабочий свободен, он берется за наладку станка; на это он тратит среднее время

где - интенсивность потока обслуживаний (наладок).

Если в момент выхода станка из строя рабочий занят, станок становится в очередь на обслуживание и ждет, пока рабочий не освободится.

Требуется найти вероятности состояний данной системы и ее характеристики:

Вероятность того, что рабочий не будет занят,

Вероятность наличия очереди,

Среднее число станков, ожидающих очереди на ремонт и т. д.

Перед нами - своеобразная система массового обслуживания, где источниками заявок являются станки, имеющиеся в ограниченном количестве и подающие или не подающие заявки в зависимости от своего состояния: при выходе станка из строя он перестает быть источником новых заявок. Следовательно, интенсивность общего потока заявок, с которым приходится иметь дело рабочему, зависит от того, сколько имеется неисправных станков, т. е. сколько заявок связано с процессом обслуживания (непосредственно обслуживается или стоит в очереди).

Характерным для замкнутой системы массового обслуживания является наличие ограниченного числа источников заявок.

В сущности, любая СМО имеет дело только с ограниченным числом источников заявок, но в ряде случаев число этих источников так велико, что можно пренебречь влиянием состояния самой СМО на поток заявок. Например, поток вызовов на АТС крупного города исходит, в сущности, от ограниченного числа абонентов, но это число так велико, что практически можно считать интенсивность потока заявок независимой от состояний самой АТС (сколько каналов занято в данный момент). В замкнутой же системе массового обслуживания источники заявок, наряду с каналами обслуживания, рассматриваются как элементы СМО.

Рассмотрим сформулированную выше задачу о рабочем-наладчике в рамках общей схемы марковских процессов.

Система, включающая рабочего и станков, имеет ряд состояний, которые мы будем нумеровать по числу неисправных станков (станков, связанных с обслуживанием):

Все станки исправны (рабочий свободен),

Один станок неисправен, рабочий занят его наладкой,

Два станка неисправны, один налаживается, другой ожидает очереди,

Все станков неисправны, один налаживается, стоят в очереди.

Граф состояний приведен на рис. 5.9. Интенсивности потоков событий, переводящих систему из состояния в состояние, проставлены у стрелок. Из состояния систему переводит поток неисправностей всех работающих станков; его интенсивность равна Из состояния S в систему переводит поток неисправностей уже не а станков (работают всего ) и т. д. Что касается интенсивностей потоков событий, переводящих систему по стрелкам справа налево, то они все одинаковы - работает все время один рабочий с интенсивностью обслуживания

Пользуясь, как обычно, общим решением задачи о предельных вероятностях состояний для схемы гибели и размножения (§8 гл. 4), напишем предельные вероятности состояний:

Вводя, как и раньше, обозначения перепишем эти формулы в виде

Итак, вероятности состояний СМО найдены.

В силу своеобразия замкнутой СМО, характеристики ее эффективности будут отличны от тех, которые мы применяли ранее для СМО с неограниченным количеством источников заявок.

Роль «абсолютной пропускной способности» в данном случае будет играть среднее количество неисправностей, устраняемых рабочим в единицу времени. Вычислим эту характеристику. Рабочий занят наладкой станка с вероятностью

Если он занят, он обслуживает станков (ликвидирует неисправностей) в единицу времени; значит, абсолютная пропускная способность системы

Относительную пропускную способность для замкнутой СМО мы не вычисляем, так как каждая заявка, в конце концов, будет обслужена:

Вероятность того, что рабочий не будет занят:

Вычислим среднее число неисправных станков, иначе - среднее число станков, связанных с процессом обслуживания. Обозначим это среднее число w. Вообще говоря, величину w можно вычислить непосредственно, по формуле

но проще будет найти ее через абсолютную пропускную способность А.

Действительно, каждый работающий станок порождает поток неисправностей с интенсивностью к; в нашей СМО в среднем работает станков; порождаемый ими средний поток неисправностей будет иметь среднюю интенсивность все эти неисправности устраняются рабочим, следовательно,

Определим теперь среднее число станков , ожидающих наладки в очереди. Будем рассуждать следующим образом: общее число станков W, связанных с обслуживанием, складывается из числа станков R, стоящих в очереди, плюс число станков непосредственно находящихся под обслуживанием:

Число станков , находящихся под обслуживанием, равно единице, если рабочий занят, и нулю, если он свободен, т. е. среднее значение Й равно вероятности того, что рабочий занят:

Вычитая эту величину из среднего числа w станков, связанных с обслуживанием (неисправных), получим среднее число станков, ожидающих обслуживания в очереди:

Остановимся еще на одной характеристике эффективности СМО: на производительности группы станков, обслуживаемых рабочим.

Зная среднее число неисправных станков w и производительность исправного станка за единицу времени, можно оценить среднюю потерю L производительности группы станков в единицу времени за счет неисправностей;

Пример 1. Рабочий обслуживает группу из трех станков. Каждый станок останавливается в среднем 2 раза в час Процесс наладки занимает у рабочего, в среднем, 10 минут Определить характеристики замкнутой СМО: вероятность занятости рабочего; его абсолютную пропускную способность А; среднее количество неисправных станков; среднюю относительную потерю производительности группы станков за счет неисправностей

Решение. Имеем.

По формулам (8.1)

Вероятность занятости рабочего:

Абсолютная пропускная способность рабочего (среднее число неисправностей, которое он ликвидирует в час):

Среднее число неисправных станков находим по формуле (8.5):

Средняя относительная потеря производительности группы станков за счет неисправностей , т. е. за счет неисправностей группа станков теряет около 35% производительности.

Рассмотрим теперь более общий пример замкнутой СМО: бригада из рабочих обслуживает станков Перечислим состояния системы.

До сих пор мы рассматривали системы, в которых входящий поток никак не связан с выходящим. Такие системы называются разомкнутыми . В некоторых же случаях обслуженные требования после задержки опять поступают на вход. Такие СМО называются замкнутыми .

· Поликлиника, обслуживающая данную территорию.

· Бригада рабочих, закрепленная за группой станков.

В замкнутых СМО циркулирует одно и то же конечное число потенциальных требований. Пока потенциальное требование не реализовалось в качестве требования на обслуживание, считается, что оно находится в блоке задержки .

В момент реализации оно поступает в саму систему. Например, рабочие обслуживают группу станков. Каждый станок является потенциальным требованием, превращаясь в реальное в момент своей поломки. Пока станок работает, он находится в блоке задержки, а с момента поломки до момента окончания ремонта – в самой системе. Каждый работник является каналом обслуживания.

Пусть n – число каналов обслуживания, s – число потенциальных заявок, λ –интенсивность потока заявок каждого потенциального требования, m – интенсивность обслуживания, . Поток

· Вероятность простоя (того, что все обслуживающие аппараты свободны, нет заявок):

(4.27)

· Финальные вероятности состояний системы

(4.28)

Через эти вероятности выражается среднее число замкнутых каналов :

Через находим абсолютную пропускную способность системы

а также среднее число заявок в системе

(4.31)

Пример решения задачи.

Рабочий обслуживает 4 станка. Каждый станок отказывает с интенсивностью λ = 0,5 отказа в час. Среднее время ремонта ч. Определить пропускную способность системы.

Решение

Эта задача рассматривает замкнутую СМО,

Вероятность простоя рабочего определяется по формуле (4.27):

Вероятность занятости рабочего

.

Если рабочий занят, он налаживает станков в единицу времени, пропускная способность системы

Станков в час.

Ø Важно помнить. При применении экономического показателя важно правильно оценить реальные издержки, которые могут изменяться, например, от времени года, от объема запасов угля и пр.

На практике часто встречаются; замкнутые системы обслуживания, у которых входящий поток заявок существенным образом зависит от состояния самой СМО. В качестве примера можно привести ситуацию, когда на ремонтную базу поступают с мест эксплуатации некоторые машины: понятно, что чем больше машин находится в состоянии ремонта, тем меньше их продолжает эксплуатироваться и тем меньше интенсивность потока вновь поступающих на ремонт машин. Для замкнутых СМО характерным является ограниченное число источников заявок, причем каждый источник «блокируется» на время обслуживания его заявки (т.е. он не выдает новых заявок). В подобных системах при конечном числе состояний СМО предельные вероятности будут существовать при любых значения интенсивностей потоков заявок и обслуживании. Они могут быть вычислены, если вновь обратиться к процессу гибели и размножения.



Задания для самостоятельной работы.

1. Станция «Железная дорога» в мегаполисе принимает составы для разгрузки угля на платформах. В среднем за сутки на станцию прибывают 16 составов с углем. Поступление носит случайный характер. Плотность прихода составов показала, что поступление на разгрузку удовлетворяет пуассоновскому потоку с параметром состава в час. Время разгрузки состава является случайной величиной, удовлетворяющей экспоненциальному закону со средним временем разгрузки час. Простой состава в сутки составляет y.e; простой платформы в сутки за опоздание прихода состава – y.e; стоимость эксплуатации платформы в сутки – y.e. Издержки подсчитать за сутки. Требуется провести анализ эффективности функционирования станции.

2. Интернет-провайдер в небольшом городе имеет 5 выделенных каналов обслуживания. В среднем на обслуживание одного клиента уходит 25 минут. В систему в среднем поступает 6 заказов в час. Если свободных каналов нет, следует отказ. Определить характеристики обслуживания: вероятность отказа, среднее число занятых обслуживанием линий связи, абсолютную и относительную пропускные способности, вероятность обслуживания. Найти число выделенных каналов, при котором относительная пропускная способность системы будет не менее 0,95. Считать, что потоки заявок и обслуживаний простейшие.

3. Порт имеет один причал для разгрузки судов. Интенсивность потока 0,4 в сутки, среднее время разгрузки одного судна 2 суток. В предположении неограниченности очереди определить показатели эффективности работы причала и вероятность ожидания разгрузки не более 2 судов.

4. Порт имеет один причал для разгрузки судов. Интенсивность потока 0,4 в сутки, среднее время разгрузки одного судна 2 суток. Определить показатели работы порта при условии, что судно покидает порт при наличии в очереди более 3 судов.

Что означают следующие термины и понятия?

СМО Марковский процесс
Очередь Абсолютная пропускная способность
Системы с неограниченной очередью Каналы обслуживания Относительная пропускная способность Среднее число занятых каналов
Системы с отказами Системы с ожиданием и ограниченной очередью Вероятность простоя Среднее время пребывания заявки в СМО
Поток требований Вероятность отказа
Стационарный поток Поток без последействий Вероятность отказа Среднее число заявок
Ординарный поток Среднее время ожидания
Пуассоновский поток Замкнутые СМО
Интенсивность потока Разомкнутые СМО

Теперь вы должны уметь:

o при решении прикладных задач использовать основы марковской теории;

o использовать методы статистического моделирования систем массового обслуживания;

o определить параметры систем массового обслуживания с отказами, с ограниченной очередью, с неограниченной очередью;

o описывать функционирование различных систем массового обслуживания;

o строить математические модели массового обслуживания;

o определять основные характеристики функционирования различных систем массового обслуживания.

Контрольные вопросы:

1. Дайте определение системы массового обслуживания с неограниченной очередью.

2. Определите процесс функционирования системы массового обслуживания с неограниченной очередью.

3. Перечислите основные характеристики системы массового обслуживания с неограниченной очередью.

4. Дайте определение системы массового обслуживания с отказами.

5. Определите процесс функционирования системы массового обслуживания с отказами.

6. Перечислите основные характеристики системы массового обслуживания с отказами.

7. Дайте определение системы массового обслуживания с ограниченной очередью.

8. Определите процесс функционирования системы массового обслуживания с ограниченной очередью.

9. Перечислите основные характеристики системы массового обслуживания с ограниченной очередью.

10. В чем особенности замкнутых систем массового обслуживания?


список ЛИТЕРАТУРЫ

1. Акулич И.А. Математическое программирование в примерах и задачах. – М.: Высшая школа. 1986.

2. Бережная Е.В., Бережной В.И. Математические методы моделирования экономических систем. – М.: Финансы и статистика. 2001. – 368 с.

3. Гнеденко, Б.В. Введение в теорию массового обслуживания /Б.В. Гнеденко, И.Н. Коваленко: 3-е изд., испр. и доп. – М.: Эдиториал УРСС, 2005. – 400 с.

4. Замков О.О., Толстопятенко А.В., Черемных Ю.Н. Математические методы в экономике. – М.: ДИС, 1997.

5. Исследование операций в экономике / под ред. Н.Ш. Кремера М.: Банки и биржи, изд-кое объединение ЮНИТИ, 2000.

6. Количественные методы финансового анализа / под ред. Стивена Дж. Брауна и Марка П. Крицмена. – М.: ИНФРА-М, 1996.

7. Красс М.С., Чупрынов Б.П. Основы математики и ее приложения в экономическом образовании. – М.: ДЕЛО, 2000.

8. Кремер Н.Ш., Путко Б.А. Эконометрика: учебник для вузов / под ред. проф. Н.Ш. Кремера. – М.: ЮНИТИ-ДАНА, 2002. – 311с.

9. Лабскер Л.Г., Бабешко Л.О. Игровые методы в управлении экономикой и бизнесом. – М.: ДЕЛО, 2001. – 464 с.

10. Солодовников А.С., Бабайцев В.А., Брайлов А.В. Математика в экономике. – М.: Финансы и статистика, 1999.

11. Шелобаев С.И. Математические методы и модели. Экономика, финансы, бизнес: учебное пособие для вузов. – М.: ЮНИТИ-ДАНА, 2000. – 367 с.

12. Экономико-математические методы и прикладные модели: учебное пособие для вузов // В.В. Федосеев, А.Н. Гармаш, Д.М. Дайитбегов и др.; Под ред. В.В. Федосеева. – М.: ЮНИТИ, 1999. – 391 с.

13. Экономический анализ: ситуации, тесты, примеры, задачи, выбор оптимальных решений, финансовое прогнозирование / под ред. проф. Баканова М.И. и проф. Шеремета А.Д. – М.: Финансы и статистика, 2000.


Приложение

Таблица значений функции Лапласса

x Ф(x) x Ф(x) x Ф(x) x Ф(x)
0.00 0.0000 0.32 0.1255 0.64 0.2389 0.96 0.3315
0.01 0.0040 0.33 0.1293 0.65 0.2422 0.97 0.3340
0.02 0.0080 0.34 0.1331 0.66 0.2454 0.98 0.3365
0.03 0.0120 0.35 0.1368 0.67 0.2486 0.99 0.3389
0.04 0.0160 0.36 0.1406 0.68 0.2517 1.00 0.3413
0.05 0.0199 0.37 0.1443 0.69 0.2549 1.01 0.3438
0.06 0.0239 0.38 0.1480 0.70 0.2580 1.02 0.3461
0.07 0.0279 0.39 0.1517 0.71 0.2611 1.03 0.3485
0.08 0.0319 0.40 0.1554 0.72 0.2642 1.04 0.3508
0.09 0.0359 0.41 0.1591 0.73 0.2673 1.05 0.3531
0.10 0.0398 0.42 0.1628 0.74 0.2703 1.06 0.3554
0.11 0.0438 0.43 0.1664 0.75 0.2734 1.07 0.3577
0.12 0.0478 0.44 0.1700 0.76 0.2764 1.08 0.3599
0.13 0.0517 0.45 0.1736 0.77 0.2794 1.09 0.3621
0.14 0.0557 0.46 0.1772 0.78 0.2823 1.10 0.3643
0.15 0.0596 0.47 0.1808 0.79 0.2852 1.11 0.3665
0.16 0.0636 0.48 0.1844 0.80 0.2881 1.12 0.3686
0.17 0.0675 0.49 0.1879 0.81 0.2910 1.13 0.3708.
0.18 0.0714 0.50 0.1915 0.82 0.2939 1.14 0.3729
0.19 0.0753 0.51 0.1950 0.83 0.2967 1.15 0.3749
0.20 0.0793 0.52 0.1985 0.84 0.2995 1.16 0.3770
0.21 0.0832 0.53 0.2019 0.85 0.3023 1.17 0.3790
0.22 0.0871 0.54 0.2054 0.86 0.3051 1.18 0.3810
0.23 0.0910 0.55 0.2088 0.87 0.3078 1.19 0.3830
0.24 0.0948 0.56 0.2123 0.88 0.3106 1.20 0.3849
0.25 0.0987 0.57 0.2157 0.89 0.3133 1.21 0.3869
0.26 0.1026 0.58 0.2190 0.90 0.3159 1.22 0.3883
0.27 0.1064 0.59 0.2224 0.91 0.3186 1.23 0.3907
0.28 0.1103 0.60 0.2257 0.92 0.3212 1.24 0.3925
0.29 0.1141 0.61 0.2291 0.93 0.3238 1.25 0.3944
0.30 0.1179 0.62 0.2324 0.94 0.3264
0.31 0.1217 0.63 0.2357 0.95 0.3289

Продолжение приложения

x Ф(x) x Ф(x) x Ф(x) x Ф(x)
1.26 0.3962 1.59 0.4441 1.92 0.4726 2.50 0.4938
1.27 0.3980 1.60 0.4452 1.93 0.4732 2.52 0.4941
1.28 0.3997 1.61 0.4463 1.94 0.4738 2.54 0.4945
1.29 0.4015 1.62 0.4474 1.95 0.4744 2.56 0.4948
1.30 0.4032 1.63 0.4484 1.96 0.4750 2.58 0.4951
1.31 0.4049 1.64 0.4495 1.97 0.4756 2.60 0.4953
1.32 0.4066 1.65 0.4505 1.98 0.4761 2.62 0.4956
1.33 0.4082 1.66 0.4515 1.99 0.4767 2.64 0.4959
1.34 0.4099 1.67 0.4525 2.00 0.4772 2.66 0.4961
1.35 0.4115 1.68 0.4535 2.02 0.4783 2.68 0.4963
1.36 0.4131 1.69 0.4545 2.04 0.4793 2.70 0.4965
1.37 0.4147 1.70 0.4554 2.06 0.4803 2.72 0.4967
1.38 0.4162 1.71 0.4564 2.08 0.4812 -2.74 0.4969
1.39 0.4177 1.72 0.4573 2.10 0.4821 2.76 0.4971
1.40 0.4192 1.73 0.4582 2.12 0.4830 2.78 0.4973
1.41 0.4207 1.74 0.4591 2.14 0.4838 2.80 0.4974
1.42 0.4222 1.75 0.4599 2.16 0.4846 2.82 0.4976
1.43 0.4236 1.76 0.4608 2.18 0.4854 2.84 0.4977
1.44 0.4251 1.77 0.4616 2.20 0.4861 2.86 0.4979
1.45 0.4265 1.78 0.4625 2.22 0.4868 2.88 0.4980
1.46 0.4279 1.79 0.4633 2.24 0.4875 2.90 0.4981
1.47 0.4292 1.80 0.4641 2.26 0.4881 2.92 0.4982
1.48 0.4306 1.81 0.4649 2.28 0.4887 2.94 0.4984
1.49 0.4319 1.82 0.4656 2.30 0.4893 2.96 0.4985
1.50 0.4332 1.83 0.4664 2.32 0.4898 2.98 0.4986
1.51 0.4345 1.84 0.4671 2.34 0.4904 3.00 0.49865
1.52 0.4357 1.85 0.4678 2.36 0.4909 3.20 0.49931
1.53 0.4370 1.86 0.4686 2.38 0.4913 3.40 0.49966
1.54 0.4382 1.87 0.4693 2.40 0.4918 3.60 0.49984
1.55 0.4394 1.88 0.4699 2.42 0.4922 3.80 0.49992
1.56 0.4406 1.89 0.4706 2.44 0.4927 4.00 0.49996
1.57 0.4418 1.90 0.4713 2.46 0.4931 4.50 0.49999
1.58 0.4429 1 1.91 0.4719 2.48 0.4934 S 5.00 0.49999

Татьяна Владимировна Калашникова

Модель обслуживания машинного парка представляет собой модель замкнутой системы массового обслуживания.

До сих пор мы рассматривали только такие системы массового обслуживания, для которых интенсивность входящего потока заявок не зависит от состояния системы. В этом случае источник заявок является внешним по отношению к СМО и генерирует неограниченный поток требований. Рассмотрим системы массового обслуживания, для которых зависит от состояния системы, при чем источник требований является внутренним и генерирует ограниченный поток заявок.

Например, обслуживается машинный парк, состоящий из машин, бригадой механиков , причем каждая машина мо­жет обслуживаться только одним механиком. Здесь машины являются источниками требований (заявок на обслуживание), а механики - обслуживающими каналами. Неисправная машина после обслуживания используется по своему прямому назначению и становится потенциальным источником возникновения требований на обслуживание. Очевидно, что интенсивность зависит от того, сколько машин в данный момент находится в эксплуатации и сколько машин обслуживается или стоит в очереди, ожидая обслуживания .

В рассматриваемой модели емкость источника требований следует считать ограниченной. Входящий поток требований исходит из ограниченного числа эксплуатируемых машин , которые в случайные моменты времени выходят из строя и требуют обслуживания. При этом каждая машина из находится в эксплуатации и генерирует пуассоновский поток требований с интенсивностью независимо от других объектов, общий (суммарный) входящий поток имеет интенсивность . Требование, поступившее в систему в момент, когда свободен хотя бы один канал, немедленно идет на обслуживание. Если требование застает все каналы занятыми обслуживанием других требований, то оно не покидает систему, а становится в очередь и ждет, пока один из каналов не станет свободным.

Таким образом, в замкнутой системе массового обслуживания входящий поток требований формируется из выходящего потока.



Состояние системы характеризуется общим числом требований , находящихся на обслуживании и в очереди. Для рассматриваемой замкнутой системы, очевидно, . При этом если система находится в состоянии , то число объектов, находящихся в эксплуатации, равно .

Если - интенсивность потока требований в расчете на одну машину, а - интенсивность обслуживания одним механиком то:

(1)

(2)

Состояние СМО определяется числом машин, как обслуживаемых, так и ожидающих обслуживания:

Все машины исправны;

Одна машина неисправна (один механик занят обслуживанием), очереди нет;

Машин неисправны ( механиков заняты обслуживанием), очереди нет;

- - - - - - - - - - - - - - - - - - - - - - - -

Машин неисправны ( механиков заняты обслуживанием), машин стоят в очереди.

Построим граф состояний СМО.

Система дифференциальных уравнений Колмогорова, описывающих работу за­мкнутой СМО, выглядит следующим об­разом:

(3)

Для стационарного режима система ДУ трансформируется в систему алгебраических уравнений:

(4)

Определяем финальные вероятности из системы (4)

(5)

Величина определяется из условия нормировки .

Определим показатели эффективности СМО:

· Среднее число требований в очереди на обслуживание (средняя длина очереди)

; (6)

· среднее число требований, находящихся в системе (на обслуживании и в очереди)

; (7)

· среднее число механиков (каналов), «простаивающих» из-за отсутствия работы

; (8)

· коэффициент простоя обслуживаемого объекта (машины) в очереди

; (9)

· коэффициент использования объектов (машин)

; (10)

· коэффициент простоя обслуживающих каналов (механиков)

· среднее время ожидания обслуживания (время ожидания обслуживания в очереди)

. (12)

Пример .Для обслуживания десяти персональных компьютеров (ПК) выделено два инженера одинаковой производительности. Поток отказов (неисправностей) одного компьютера - пуассоновский с интенсивностью = 0,2. Время обслуживания ПК подчиняется показательному закону. Среднее время обслуживания одного ПК одним инженером составляет .

 Возможны два варианта организации обслуживания ПК:

· оба инженера обслуживают все десять компьютеров, так что при отказе ПК его обслуживает один из свободных инженеров, в этом случае ;

· каждый из двух инженеров обслуживает по пять закреплен­ных за ним ПК. В этом случае .

Необходимо выбрать наилучший вариант организации обслуживания ПК.

Решение

1. Вычислим интенсивность обслуживания

2. Приведенная интенсивность

.

3. Вычислим вероятностные характеристики СМО для двух вариантов организации обслуживания ПК.

Вариант 1

1. Определим вероятности состояний системы:

Учитывая, что =1 и используя результаты расчета P k , вычислим P 0:

Откуда P 0 = 0,065.

 Определим среднее число компьютеров в очереди на обслуживание:

 Определим среднее число ПК, находящихся в системе (на обслу­живании и в очереди):

 Определим среднее число инженеров, простаивающих из-за от­сутствия работы.

Пример. С1, С2, С3 – станки; НЦ – центральный накопитель; B – манипулятор. Транспортная тележка (манипулятор) транспортирует отработанную деталь от станка к накопителю и укладывает ее там, забирает новую деталь (заготовку), транспортирует ее к станку и устанавливает в рабочую позицию для зажима. Во время всего периода, необходимого для выгрузки–загрузки, станок простаивает. Время T з смены заготовки и есть время обслуживания.

Интенсивность обслуживания станков определяется как ,– среднее время обслуживания станка, которое вычисляется как, гдеn – число заявок. Интенсивность подачи станком заявки на обслуживание определяется как (где– среднеее время обработки детали станком).

Станочная система с однозахватным манипулятором представляет собой СМО с ожиданием с внутренней организацией FIFO: каждая заявка станка на обслуживание удовлетворяется, в случае когда манипулятор занят, заявка становится в очередь и станок ожидает когда манипулятор освободится. Данный процесс марковский, т.е. случайная выдача заявки на обслуживание в определенный момент времени t 0 не зависит от предыдущих заявок, т.е. от течения процесса в предшествующий период. Продолжительность исполнения заявки может быть различной и является случайной величиной, не зависящей от числа поданных заявок. Весь процесс не зависит от того, что произошло ранее момента времени t 0 .

В станочной системе число заявок на обслуживание может быть равно 0, 1, 2, ... m , где m – общее число станков. Тогда возможны следующие состояния:

S 0 – все станки работают, манипулятор стоит.

S 1 – все станки, кроме одного, работают, манипулятор обслуживает станок, от которого поступила заявка на смену заготовок.

S 2 – работают m -2 станка, на одном станке идет смена заготовки, другой ожидает.

S 3 – работают m -2 станка, один станок обслуживается манипулятором, два станка ожидают в очереди.

S m – все станки стоят, один обслуживается манипулятором, остальные ожидают очереди исполнения заказа.

Рис.4.6.

Вероятность перехода в состояние S k из одного из возможных состояний S 1 , S 2 , ... S m зависит от случайного поступления заявок на обслуживание и вычисляется как:

p 0 – вероятность того, что все станки работают.

Манипулятор работает при состояниях системы от S 1 до S m ­ . Тогда вероятность его загрузки равна: .

Число станков, находящихся в очереди связано с состояниями S 2 , – S m , при этом один станок обслуживается, а (k-1) – ожидают. Тогда, среднее число станков в очереди: .

Коэффициент простоя одного станка (из-за ожидания при многостаночном обслуживании): .

Среднее использование одного станка:

Применение метода Монте-Карло для решения задач, связанных с теорией массового обслуживания

Для того, чтобы описать поток однородных событий, достаточно знать закон распределения моментов времени t 1 , t 2 , ..., t k , ..., в которые поступают события.

Для удобства дальнейших рассмотрений целесообразно от величин t 1 , t 2 , ..., перейти к случайным величинам 1 , 2 , ..., m , ... , таким образом, что:

Случайные величины k являются длинами интервалов времени между последовательными моментами t k .

Совокупность случайных величин i считается заданной, если определена совместная функция распределения: . Обычно рассматриваются только непрерывные случайные величины k , поэтому часто пользуются соответствующей функцией плотности f (z 1 , z 2 ,..., z k ) .

Обычно в теории СМО рассматриваются потоки однородных событий без последействия, для которых случайные величины k независимы. Поэтому . Функцииf i (z i ) при i >1 представляют собой условные функции плотности при условии, что в начальный момент интервала k (i >1) поступила заявка. В отличие от этого функция f 1 (z 1 ) является безусловной функцией плотности, т.к. относительно появления или непоявления заявки в начальный момент времени не делается никаких предположений.

Широкое применение имеют так называемые стационарные потоки, для которых вероятностный режим их во времени не изменяется (т.е. вероятность появления k заявок за промежуток времени (t 0 , t 0 + t ) не зависит от t 0 , а зависит только от t и k ). Для стационарных потоков без последействия имеют место соотношения:

где  – плотность стационарного потока.

Поступившая в систему заявка может занимать только свободные линии. Относительно порядка занятия линий могут быть сделаны различные предположения:

а) линии занимаются в порядке их номеров. Линия с большим номером не может быть привлечена к обслуживанию заявки, если имеется свободная линии с меньшим номером;

б) линии занимаются в порядке очереди. Освободившаяся линия поступает в очередь и не начинает обслуживания заявок до израсходования всех ранее освободившихся линий;

в) линии занимаются в случайном порядке в соответствии с заданными вероятностями. Если в момент поступления очередной заявки имеется n св свободных линий, то в простейшем случае вероятность занять некоторую определенную линию может быть принята равной . В более сложных случаях вероятности считаются зависящими от номеров линий, моментов их освобождения и других параметров.

Аналогичные предположения можно сделать и относительно порядка принятия заявок к обслуживанию в том случае, когда в системе образуется очередь заявок:

а) заявки принимаются к обслуживанию в порядке очереди. Освободившаяся линия приступает к обслуживанию той заявки, которая ранее другой поступила в систему;

б) заявки принимаются к обслуживанию по минимальному времени получения отказа. Освободившаяся линия приступает к обслуживанию той заявки, которая в кратчайшее время может получить отказ;

в) заявки принимаются к обслуживанию в случайном порядке в соответствии с заданными вероятностями. Если в момент освобождения линии имеется m заявок в очереди, то в простейшем случае вероятность выбрать для обслуживания некоторую определенную заявку может быть принята равной q =1/ m . В более сложных случаях вероятности q 1 , q 2 ,..., q m считаются зависящими от времени пребывания заявки в системе, времени, остающегося до получения отказа и других параметров.

Для решения ряда прикладных задач оказывается необходимым учитывать такой важный фактор, как надежность элементов обслуживающей системы. Будем предполагать, что с точки зрения надежности каждая линия в данный момент времени может быть либо исправной, либо неисправной. Надежность линии определяется вероятностью безотказной работы R = R (t ) , задаваемой как функция времени. Будем также предполагать, что линия, вышедшая из строя по причине неполной надежности, может быть введена в строй (отремонтирована), для чего требуется затратить время p . Величину p будем считать случайной величиной с заданным законом распределения.

Относительно судьбы заявки, при обслуживании которой линия выходит из строя, могут быть сделаны различные предположения: заявка получает отказ; заявка остается в системе (с общим временем пребывания в системе не более n ) как претендент на обслуживание вне очереди; заявка поступает в очередь и обслуживается на общих основаниях и т.д.

Сущность метода статистических испытаний применительно к задачам массового обслуживания состоит в следующем. Строятся алгоритмы, при помощи которых можно вырабатывать случайные реализации заданных потоков однородных событий, а также «моделировать» процессы функционирования обслуживающих систем. Эти алгоритмы используются для многократного воспроизведения реализаций случайного процесса обслуживания при фиксированных условиях задачи. Получаемая при этом информация о состояниях процесса подвергается статистической обработке с целью оценки, являющихся показателями качества обслуживания.

Метод статистических испытаний позволяет более полно, по сравнению с асимптотическими формулами, исследовать зависимость качества обслуживания от характеристик потока заявок и параметров обслуживающей системы.

Это достигается благодаря двум обстоятельствам. Во-первых, при решении задач теории массового обслуживания методом статистических испытаний может быть использована более обширная информация о процессе, чем это обычно удается сделать, применяя аналитические методы.

С другой стороны, значения показателей качества обслуживания, получаемые из асимптотических формул, строго говоря, относятся к моментам времени, достаточно удаленным от начала процесса. Реально, для моментов времени, близких к началу процесса, когда еще не наступил стационарный режим, значения показателей качества обслуживания в общем случае существенно отличаются от асимптотических значений. Метод статистических испытаний позволяет достаточно обстоятельно изучать переходные режимы.

Для многих прикладных задач предположения, при которых справедливы аналитические формулы, оказываются слишком стеснительными. При решении задач методом статистических испытаний некоторые предположения могут быть существенно ослаблены.

В первую очередь это относится к многофазному обслуживанию (т.е. рассматриваются обслуживающие системы, состоящие из нескольких последовательно действующих в общем случае неоднотипных агрегатов).

Другим важным обобщением задачи является предположение о характере потока заявок, поступающих на обслуживание. Допускается рассмотрение потоков однородных событий с практически произвольным законом распределения. Последнее обстоятельство оказывается существенным по следующим двум причинам. Во-первых, реальные потоки заявок в некоторых случаях заметно отличаются от простейшего. Для пояснения второй причины предположим, что исходный поток заявок достаточно точно аппроксимируется простейшим потоком. При этом поток заявок, обслуженных на первой фазе, уже, строго говоря не будет простейшим. Поскольку поток, являющийся выходным для первой фазы, будет входным потоком для агрегата, обслуживающего заявки на второй фазе, мы снова приходим к задаче обслуживания потоков, не являющимися простейшими.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама